271 research outputs found
Peculiarities of the stochastic motion in antiferromagnetic nanoparticles
Antiferromagnetic (AFM) materials are widely used in spintronic devices as
passive elements (for stabilization of ferromangetic layers) and as active
elements (for information coding). In both cases switching between the
different AFM states depends in a great extent from the environmental noise. In
the present paper we derive the stochastic Langevin equations for an AFM vector
and corresponding Fokker-Planck equation for distribution function in the phase
space of generalised coordinate and momentum. Thermal noise is modeled by a
random delta-correlated magnetic field that interacts with the dynamic
magnetisation of AFM particle. We analyse in details a particular case of the
collinear compensated AFM in the presence of spin-polarised current. The energy
distribution function for normal modes in the vicinity of two equilibrium
states (static and stationary) in sub- and super-critical regimes is found. It
is shown that the noise-induced dynamics of AFM vector has pecuilarities
compared to that of magnetisation vector in ferromagnets.Comment: Submitted to EPJ ST, presented at the 4-th Conference on Statistical
Physics, Lviv, Ukraine, 201
Correlated hopping of electrons: Effect on the Brinkman-Rice transition and the stability of metallic ferromagnetism
We study the Hubbard model with bond-charge interaction (`correlated
hopping') in terms of the Gutzwiller wave function. We show how to express the
Gutzwiller expectation value of the bond-charge interaction in terms of the
correlated momentum-space occupation. This relation is valid in all spatial
dimensions. We find that in infinite dimensions, where the Gutzwiller
approximation becomes exact, the bond-charge interaction lowers the critical
Hubbard interaction for the Brinkman-Rice metal-insulator transition. The
bond-charge interaction also favors ferromagnetic transitions, especially if
the density of states is not symmetric and has a large spectral weight below
the Fermi energy.Comment: 5 pages, 3 figures; minor changes, published versio
To wet or not to wet: that is the question
Wetting transitions have been predicted and observed to occur for various
combinations of fluids and surfaces. This paper describes the origin of such
transitions, for liquid films on solid surfaces, in terms of the gas-surface
interaction potentials V(r), which depend on the specific adsorption system.
The transitions of light inert gases and H2 molecules on alkali metal surfaces
have been explored extensively and are relatively well understood in terms of
the least attractive adsorption interactions in nature. Much less thoroughly
investigated are wetting transitions of Hg, water, heavy inert gases and other
molecular films. The basic idea is that nonwetting occurs, for energetic
reasons, if the adsorption potential's well-depth D is smaller than, or
comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At
the wetting temperature, Tw, the transition to wetting occurs, for entropic
reasons, when the liquid's surface tension is sufficiently small that the free
energy cost in forming a thick film is sufficiently compensated by the fluid-
surface interaction energy. Guidelines useful for exploring wetting transitions
of other systems are analyzed, in terms of generic criteria involving the
"simple model", which yields results in terms of gas-surface interaction
parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy
Measurements of the Mass and Full-Width of the Meson
In a sample of 58 million events collected with the BES II detector,
the process J/ is observed in five different decay
channels: , , (with ), (with
) and . From a combined fit of all five
channels, we determine the mass and full-width of to be
MeV/ and
MeV/.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
- …