359 research outputs found
Apparent negative motion of vortex matter due to inhomogeneous pinning
We investigate the transport of vortices in superconductors with inhomgeneous pinning under a driving force. The inhomogeneity of pinning is simplified as strong-weak pinning regions. It is demonstrated that the interactions between the vortices captured by strong pinning potentials and the vortices in the weak pinning region cause absolute negative motion (ANM) of vortices: The vortices which are climbing toward the high barriers induced by the strong pinning with the help of driving force move toward the opposite direction of the force and back to their equilibrium positions in the weak pinning region as the force decreases or is withdrawn. Our simulations reveal that the hysteresis of ANM is determined by the competition between the speed of the negative motion which depends on the piining inhomogeneity in superconductors and the speed of the driving force. Under the conditions of either larger force scanning rate or higher pinning inhomogeneity, a marked ANM and a larger hysteretic speed-force loop could be observed. This indicates that the time window to observe the ANM should be chosen properly. Moreover, the V-1 characteristics of Ag-sheathed Bi=2223 tapes are measured, and experimental observations are qualitatively in agreement with the simulation
Numerical study of the thermoelectric power factor in ultra-thin Si nanowires
Low dimensional structures have demonstrated improved thermoelectric (TE)
performance because of a drastic reduction in their thermal conductivity,
{\kappa}l. This has been observed for a variety of materials, even for
traditionally poor thermoelectrics such as silicon. Other than the reduction in
{\kappa}l, further improvements in the TE figure of merit ZT could potentially
originate from the thermoelectric power factor. In this work, we couple the
ballistic (Landauer) and diffusive linearized Boltzmann electron transport
theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB)
electronic structure model. We calculate the room temperature electrical
conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires
(NWs). We describe the numerical formulation of coupling TB to those transport
formalisms, the approximations involved, and explain the differences in the
conclusions obtained from each model. We investigate the effects of cross
section size, transport orientation and confinement orientation, and the
influence of the different scattering mechanisms. We show that such methodology
can provide robust results for structures including thousands of atoms in the
simulation domain and extending to length scales beyond 10nm, and point towards
insightful design directions using the length scale and geometry as a design
degree of freedom. We find that the effect of low dimensionality on the
thermoelectric power factor of Si NWs can be observed at diameters below ~7nm,
and that quantum confinement and different transport orientations offer the
possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201
Precision measurement of the deuteron spin structure function
We report on a high-statistics measurement of the deuteron spin structure function g[sup d][sub 1] at a beam energy of 29 GeV in the kinematic range 0.029 < x < 0.8 and 1 < Q2 < 10 (GeV/c)2. The integral Gamma [sup d][sub 1] = (integral)[sup 1][sub 0]g[sup d][sub 1]dx evaluated at fixed Q2 = 3 (GeV/c)2 gives 0.042 ± 0.003(stat) ± 0.004(syst). Combining this result with our earlier measurement of g[sup p][sub 1], we find Gamma [sup p][sub 1]- Gamma [sup n][sub 1] = 0.163 ± 0.010(stat) ± 0.016(syst), which agrees with the prediction of the Bjorken sum rule with O( alpha [sup 3][sub s]) corrections, Gamma [sup p][sub 1]- Gamma [sup n][sub 1] = 0.171 ± 0.008. We find the quark contribution to the proton helicity to be Delta q = 0.30 ± 0.06
Measurements of R=sigma_L/sigma_T for 0.03<x<0.1 and Fit to World Data
Measurements were made at SLAC of the cross section for scattering 29 GeV
electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to
0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in
this kinematic range by comparing these data to cross sections measured at a
higher beam energy by the NMC collaboration. The results are in reasonable
agreement with pQCD calculations and with extrapolations of the R1990
parameterization of previous data. A new fit is made including these data and
other recent results.Comment: 8 pages, 4 figures, late
Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies
The CD4 binding site (CD4bs) of the HIV-1 envelope glycoprotein is susceptible to multiple lineages of broadly neutralizing antibodies (bnAbs) that are attractive to elicit with vaccines. The CH235 lineage (VH1-46) of CD4bs bnAbs is particularly attractive because the most mature members neutralize 90% of circulating strains, do not possess long HCDR3 regions, and do not contain insertions and deletions that may be difficult to induce. We used virus neutralization to measure the interaction of CH235 unmutated common ancestor (CH235 UCA) with functional Env trimers on infectious virions to guide immunogen design for this bnAb lineage. Two Env mutations were identified, one in loop D (N279K) and another in V5 (G458Y), that acted synergistically to render autologous CH505 transmitted/founder virus susceptible to neutralization by CH235 UCA. Man5-enriched N-glycans provided additional synergy for neutralization. CH235 UCA bound with nanomolar affinity to corresponding soluble native-like Env trimers as candidate immunogens. A cryo-EM structure of CH235 UCA bound to Man5-enriched CH505.N279K.G458Y.SOSIP.664 revealed interactions of the antibody light chain complementarity determining region 3 (CDR L3) with the engineered Env loops D and V5. These results demonstrate that virus neutralization can directly inform vaccine design and suggest a germline targeting and reverse engineering strategy to initiate and mature the CH235 bnAb lineage
Meta-analysis of exome array data identifies six novel genetic loci for lung function
Background: Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease.
Methods: We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and the ratio of FEV1 to FVC (FEV1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals.
Results: We identified significant (P<2·8x10-7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs (SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. Expression quantitative trait loci analyses found evidence for regulation of gene expression at three signals and implicated several genes, including TYRO3 and PLAU.
Conclusions: Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease
RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies
Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±
Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function
Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of l
- …