55,591 research outputs found
Recommended from our members
Measurement of cavitation in a sliding bearing using digital holography
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Although most of the mathematical models for cavitation in bearings provide reasonable estimates of engineering parameters such as load capacity and friction, they are based on substantially different assumptions and further work is required to understand the fundamental operation of bearings. In this study digital holography was used to examine bubble formation within a glass sliding bearing. Digital holography collects the both the phase and amplitude of the transmitted wavefront and therefore contains quantitative information concerning the thickness of the cavitation bubbles. This paper introduces the experimental configuration and the digital holography system used to study cavitation. It also discusses the demodulation process and how the information can be used to find other interesting parameters such as bubble position and shape
Density of states and electron concentration of double heterojunctions subjected to an in-plane magnetic field
We calculate the electronic states of
AlGaAs/GaAs/AlGaAs double heterojunctions subjected to
a magnetic field parallel to the quasi two-dimensional electron gas. We study
the energy dispersion curves, the density of states, the electron concentration
and the distribution of the electrons in the subbands. The parallel magnetic
field induces severe changes in the density of states, which are of crucial
importance for the explanation of the magnetoconductivity in these structures.
However, to our knowledge, there is no systematic study of the density of
states under these circumstances. We attempt a contribution in this direction.
For symmetric heterostructures, the depopulation of the higher subbands, the
transition from a single to a bilayer electron system and the domination of the
bulk Landau levels in the centre the wide quantum well, as the magnetic field
is continuously increased, are presented in the ``energy dispersion picture''
as well as in the ``electron concentration picture'' and in the ``density of
states picture''.Comment: J. Phys.: Condens. Matter 11 No 26 (5 July 1999) 5131-5141 Figures
(three) embedde
To synchronize or not to synchronize, that is the question: finite-size scaling and fluctuation effects in the Kuramoto model
The entrainment transition of coupled random frequency oscillators presents a
long-standing problem in nonlinear physics. The onset of entrainment in
populations of large but finite size exhibits strong sensitivity to
fluctuations in the oscillator density at the synchronizing frequency. This is
the source for the unusual values assumed by the correlation size exponent
. Locally coupled oscillators on a -dimensional lattice exhibit two
types of frequency entrainment: symmetry-breaking at , and aggregation
of compact synchronized domains in three and four dimensions. Various critical
properties of the transition are well captured by finite-size scaling relations
with simple yet unconventional exponent values.Comment: 9 pages, 1 figure, to appear in a special issue of JSTAT dedicated to
Statphys2
- …