6 research outputs found
Experimental Investigation of the Effect of Oil on Steady-State Foam Flow in Porous Media
Foam flow in porous media without oil shows two regimes depending on foam quality (gas fractional flow). Complexity and limited data on foam/oil interactions in porous media greatly restrict understanding of foam in contact with oil. Distinguishing which regimes are affected by oil is key to modeling the effect of oil on foam. We report steady-state corefloods to investigate the effect of oil on foam through its effect on the two flow regimes. We fit the parameters of a widely used local-equilibrium (LE) foam model to data for concurrent foam/oil flow. This research provides a practical approach and initial data for simulating foam enhanced oil recovery (EOR) in the presence of oil. To ensure steady state, oil is coinjected with foam at a fixed ratio of oil (U o ) to water (U w ) superficial velocities in a Bentheimer Sandstone core. Model oils used here consist of a composition of hexadecane, which is benign to foam stability, and oleic acid (OA), which can destroy foam. Varying the concentration of OA in the model oil allows one to examine the effect of oil composition on steady-state foam flow. Experimental results show that oil affects both high- and low-quality regimes, with the high-quality regime being more sensitive to oil. In particular, oil increases the limiting water saturation (S w ) in the high-quality regime and also reduces gas-mobility reduction in the low-quality regime. Unevenly spaced !p contours in the high-quality regime suggest either strongly shear-thinning behavior or an increasingly destabilizing effect of oil. In some cases, the pressure gradient (!p) in the low-quality regime decreases with increasing U w at fixed gas superficial velocity (U g ), either with or without oil. This might reflect either an effect of oil, if oil is present, or easier flow of bubbles under wetter conditions. Increasing the OA concentration extends the high-quality regime to lower foam qualities, indicating more difficulty in stabilizing foam. Thus, oil composition plays as significant a role as oil saturation (S o ). A model fit assuming a fixed S w and including shear thinning in the low-quality regime does not represent the two regimes when the oil effect is strong enough. In such cases, fitting S w to each !p contour and excluding shear thinning in the low-quality regime yield a better match to these data. The dependency of S w on S o is not yet clear because of the absence of oil-saturation data in this study. Furthermore, none of the current foam-simulation models captures the upward-tilting !p contours in the low-quality regime. Green Open Access added to TU Delft Institutional Repository โYou share, we take care!โ โ Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Petroleum Engineerin
CT coreflood study of foam flow for enhanced oil recovery: The effect of oil type and saturation
We present a CT coreflood study of foam, both pre-generated and generated in-situ, displacing oil, as a function of oil type and saturation. Foam generation and propagation are reflected through sectional pressure measurements. Dual-energy CT imaging monitors in-time phase saturations. With an oil less harmful to foam (hexadecane), injection with and without pre-generation of foam exhibits similarities: propagation of a foam bank through a core and later refinement of foam texture. In contrast, with an oil destabilizing to foam (with 20 wt% oleic acid in the hexadecane), pre-generation of foam behaves very differently from co-injection, suggesting very-different effects on foam generation and propagation. Without pre-generation, strong-foam generation is very difficult even at residual oil saturation (about 0.1); generation finally starts from the outlet (likely a result of the capillary-end effect). This strong-foam state propagates upstream very slowly. Pre-generated foam shows two stages of propagation, both from the inlet to outlet. First, weak foam displaces most of the oil, followed by a propagation of stronger foam at lower oil saturation. This dependence on injection method with harmful oil is not represented in currently applied foam models, which need further improvements for reliable prediction of foam for enhanced oil recovery.Accepted Author ManuscriptPetroleum Engineerin
CT Coreflood Study of Transient Foam Flow with Oil
We present a CT coreflood study of foam flow with two representative oils: hexadecane C16 (benign to foam) and a mixture of 80 wt% C16 and 20 wt% oleic acid (OA) (very harmful to foam). The purpose is to understand the transient dynamics of foam, both generated in-situ and pre-generated, as a function of oil saturation and type. Foam dynamics with oil (generation and propagation) are quantified through sectional pressure-drop measurements. Dual-energy CT imaging monitors phase saturation distributions during the corefloods. With C16, injection with and without pre-generation of foam exhibits similar transient behavior: strong foam moves quickly from upstream to downstream and creates an oil bank. In contrast, with 20 wt % OA, pre-generation of foam gives very different results from co-injection, suggesting that harmful oils affect foam generation and propagation differently. Without pre-generation, initial strong-foam generation is very difficult even at residual oil saturation about 0.1; the generation finally starts from the outlet (a likely result of the capillary-end effect). This strong-foam state propagates backwards against flow and very slowly. The cause of backward propagation is unclear yet. However, pre-generated foam shows two stages of propagation, both from the inlet to outlet. First, weak foam displaces most of the oil, followed by a propagation of stronger foam at lower oil saturation. Implicit-texture foam models for enhanced oil recovery cannot distinguish the different results between the two types of foam injection with very harmful oils. This is because these models do not distinguish between pre-generation and co-injection of gas and surfactant solution.Green Open Access added to TU Delft Institutional Repository โYou share, we take care!โ โ Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Petroleum Engineerin
New Capillary Number Definition for Micromodels: The Impact of Pore Microstructure
A new capillary number (N ca ) definition is proposed for 2-D etched micromodels. We derive the new definition from a force balance on a nonwetting ganglion trapped by capillarity. It incorporates the impact of pore microstructure on mobilization. The geometrical factors introduced can be estimated directly from image analysis of the pore network etched in the micromodel, without conducting flow experiments. The improved fit of the new N ca to published data supports its validity. The new definition yields a consistent trend in the capillary-desaturation curve. The conventional N ca definitions proposed for porous rock give a large scatter in the capillary-desaturation curve for data in micromodels. This is due to the different type of flow in micromodels, as 2-D networks, relative to 3-D geological porous media. In particular, permeability is dominated by channel depth in micromodels with shallow depth of etching, and generally, there is no simultaneous multiphase flow under capillary-dominated conditions. Applying the conventional definitions to results in micromodels may lead to misleading conclusions for fluid transport in geological formations. Petroleum Engineerin