162 research outputs found

    Block of mouse Slo1 and Slo3 K+ channels by CTX, IbTX, TEA, 4-AP and quinidine

    Get PDF
    pH-regulated Slo3 channels, perhaps exclusively expressed in mammalian sperm, may play a role in alkalization-mediated K(+) fluxes associated with sperm capacitation. The Slo3 channel shares extensive homology with Ca(2+)- and voltage-regulated BK-type Slo1 K(+) channels. Here, using heterologous expression in oocytes, we define distinctive differences in pharmacological properties of Slo3 and Slo1 currents, examine blockade in terms of distinct blocking models, and, for some blockers, use mutated constructs to evaluate determinants of block. Slo3 is resistant to block by the standard Slo1 blockers, iberiotoxin, charybdotoxin and extracellular TEA. Slo3 is relatively insensitive to extracellular 4-AP up to 100 mM, while Slo1 is blocked in a voltage-dependent fashion consistent with block on the extracellular side of the channel. Block of both Slo1 and Slo3 by cytosolic 4-AP can be described by open channel block, with Slo3 being ~10–15-fold more sensitive, but exhibiting weaker voltage-dependence of block. The cytosolic concentrations of 4-AP required to block Slo3 make it unlikely that the effects of 4-AP on volume regulation in mammalian sperm is mediated by Slo3. Quinidine was more effective in blocking Slo3 than Slo1. For Slo1, quinidine block was favored by depolarization, irrespective of the side of application. For Slo3, quinidine block was relieved by depolarization, irrespective of the side of application, with strong block by less than 10 μM quinidine at potentials near 0 mV. The unusual voltage-dependence of block of Slo3 by quinidine may result from preferential binding of quinidine to closed Slo3 channels. The quinidine concentrations effective in blocking Slo3 suggest, that in experiments that have examined quinidine effects on sperm, any Slo3 currents would be almost completely inhibited

    tert-Butyl N′-[4-(2-pyrid­yl)benzyl­idene]hydrazinecarboxyl­ate

    Get PDF
    In the mol­ecule of the title compound, C17H19N3O2, the aromatic rings are oriented at a dihedral angle of 3.68 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the a axis. A weak C—H⋯π inter­action is also present

    Identification of a Novel PIP2 Interaction Site and its Allosteric Regulation by the RCK1 Site Associated with Ca2+ Coordination in Slo1 Channels

    Get PDF
    We consider the Schr\"odinger operator on a combinatorial graph consisting of a finite graph and a finite number of discrete half-lines, all jointed together, and compute an asymptotic expansion of its resolvent around the threshold 00. Precise expressions are obtained for the first few coefficients of the expansion in terms of the generalized eigenfunctions. This result justifies the classification of threshold types solely by growth properties of the generalized eigenfunctions. By choosing an appropriate free operator a priori possessing no zero eigenvalue or zero resonance we can simplify the expansion procedure as much as that on the single discrete half-line.Comment: 55 pages, minor revisions, final versio

    2-[2-(Methyl­sulfon­yl)eth­yl]isoindoline-1,3-dione

    Get PDF
    In the mol­ecule of the title compound, C11H11NO4S, the isoindoline ring system is almost planar with a maximum deviation of 0.008 (3)Å. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. π–π contacts between the isoindoline rings [centroid–centroid distances = 3.592 (1) and 3.727 (1) Å] may further stabilize the structure

    Different Functions of the Insect Soluble and Membrane-Bound Trehalase Genes in Chitin Biosynthesis Revealed by RNA Interference

    Get PDF
    BACKGROUND: Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1) and membrane-bound (Tre-2) trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported. PRINCIPAL FINDINGS: The membrane-bound trehalase of Spodoptera exigua (SeTre-2) was characterized in our laboratory previously. In this study, we cloned the soluble trehalase gene (SeTre-1) and investigated the tissue distribution and developmental expression pattern of the two trehalase genes. SeTre-1 was expressed highly in cuticle and Malpighian tubules, while SeTre-2 was expressed in tracheae and fat body. In the midgut, the two trehalase genes were expressed in different locations. Additionally, the expression profiles of both trehalase mRNAs and their enzyme activities suggest that they may play different roles in chitin biosynthesis. The RNA interference (RNAi) of either SeTre-1 or SeTre-2 was gene-specific and effective, with efficiency rates up to 83% at 72 h post injection. After RNAi of SeTre-1 and SeTre-2, significant higher mortality rates were observed during the larva-pupa stage and pupa-adult stage, and the lethal phenotypes were classified and analyzed. Additionally, the change trends of concentration of trehalose and glucose appeared reciprocally in RNAi-mutants. Moreover, knockdown of SeTre-1 gene largely inhibited the expression of chitin synthase gene A (CHSA) and reduced the chitin content in the cuticle to two-thirds relative to the control insects. The chitin synthase gene B (CHSB) expression, however, was inhibited more by the injection of dsRNA for SeTre-2, and the chitin content in the midgut decreased by about 25%. CONCLUSIONS: SeTre-1 plays a major role in CHSA expression and chitin synthesis in the cuticle, and SeTre-2 has an important role in CHSB expression and chitin synthesis in the midgut

    Unconventional polarization switching mechanism in (Hf, Zr)O2 ferroelectrics

    Full text link
    HfO2_{2}-based ferroelectric thin films are promising for their application in ferroelectric devices. Predicting the ultimate magnitude of polarization and understanding its switching mechanism are critical to realize the optimal performance of these devices. Here, a generalized solid-state variable cell nudged elastic band (VCNEB) method is employed to predict the switching pathway associated with domain-wall motion in (Hf, Zr)O2_{2} ferroelectrics. It is found that the polarization reversal pathway, where three-fold coordinated O atoms pass across the nominal unit-cell boundaries defined by the Hf/Zr atomic planes, is energetically more favorable than the conventional pathway where the O atoms do not pass through these planes. This finding implies that the polarization orientation in the orthorhombic Pca21_{1} phase of HfO2_{2} nd its derivatives is opposite to that normally assumed, predicts the spontaneous polarization magnitude of about 70 μ{\mu}C/cm2^{2} that is nearly 50% larger than the commonly accepted value, signifies a positive intrinsic longitudinal piezoelectric coefficient, and suggests growth of ferroelectric domains, in response to an applied electric field, structurally reversed to those usually anticipated. These results provide important insights into the understanding of ferroelectricity in HfO2_{2}-based ferroelectrics.Comment: 34 pages, 28 figure

    Glycine311, a determinant of paxilline block in BK channels: a novel bend in the BK S6 helix

    Get PDF
    The tremorogenic fungal metabolite, paxilline, is widely used as a potent and relatively specific blocker of Ca2+- and voltage-activated Slo1 (or BK) K+ channels. The pH-regulated Slo3 K+ channel, a Slo1 homologue, is resistant to blockade by paxilline. Taking advantage of the marked differences in paxilline sensitivity and the homology between subunits, we have examined the paxilline sensitivity of a set of chimeric Slo1/Slo3 subunits. Paxilline sensitivity is associated with elements of the S5–P loop–S6 module of the Slo1 channel. Replacement of the Slo1 S5 segment or the second half of the P loop results in modest changes in paxilline sensitivity. Replacing the Slo1 S6 segment with the Slo3 sequence abolishes paxilline sensitivity. An increase in paxilline affinity and changes in block kinetics also result from replacing the first part of the Slo1 P loop, the so-called turret, with Slo3 sequence. The Slo1 and Slo3 S6 segments differ at 10 residues. Slo1-G311S was found to markedly reduce paxilline block. In constructs with a Slo3 S6 segment, S300G restored paxilline block, but most effectively when paired with a Slo1 P loop. Other S6 residues differing between Slo1 and Slo3 had little influence on paxilline block. The involvement of Slo1 G311 in paxilline sensitivity suggests that paxilline may occupy a position within the central cavity or access its blocking position through the central cavity. To explain the differences in paxilline sensitivity between Slo1 and Slo3, we propose that the G311/S300 position in Slo1 and Slo3 underlies a structural difference between subunits in the bend of S6, which influences the occupancy by paxilline
    corecore