36 research outputs found

    Photocatalytic Degradation and Hydrogen Production of TiO2/Carbon Fiber Composite Using Bast as a Carbon Fiber Source

    No full text
    TiO2/carbon fiber composite is achieved by loading TiO2 nanoparticles on biomass carbon fiber, which originates from the carbonized natural bast. The carbonized process and the loading amount of TiO2 are researched in detail. It is found that the carbonized bast fiber shows robust adsorption characteristics for TiO2 nanoparticles in aqueous dispersion, and TiO2 nanoparticles with ~15 wt.% in total weight are uniformly loaded onto the fiber surface. The photocatalytic properties of TiO2/carbon fiber composite are evaluated by photocatalytic degradation of rhodamine B and water splitting for hydrogen production. The results indicate that 90% RhB molecules could be attacked in 60 min under UV light irradiation, and the hydrogen production rate of water splitting is up to 338.51 μmol/h. The highlight is that TiO2/carbon fiber composite is easy to be recycled due to the incorporation of macroscopical biomass carbon fiber

    A Purified Serine Protease from Nereis virens and Its Impaction of Apoptosis on Human Lung Cancer Cells

    No full text
    Nereis active protease (NAP) is a novel fibrinolytic active serine protease from the polychaete Nereis virens. In this study, NAP was purified from Nereis virens and the effects of NAP on human lung cancer cells were investigated. Our results indicated that NAP inhibited the proliferation and induced apoptosis of H1299 cells in a time- and dose-dependent manner. The loss of mitochondrial membrane potential, the activation of Bax and cleaved-caspase 3/9, the release of cytochrome C, and the suppression of Bcl-2 and poly-ADP ribose polymerase were observed in NAP-treated H1299 cells by flow cytometry and Western blotting. Moreover, the expression levels of Bax and Bcl-2 mRNA were determined by real-time quantitative polymerase chain reaction and the Bax/Bcl-2 expression ratio was increased in the NAP-treated cell lines. The results indicated that NAP-induced apoptosis may be related to mitochondria mediated apoptosis and occurs through caspase-dependent pathways. Then, the effects of NAP on tumor growth in animal models were observed, where 5 or 10 mg/kg of NAP noticeably reduced tumor volume and weight and increased apoptosis as determined by Western blotting when compared to the negative control group. Therefore, our findings suggest that NAP could be a hopeful anticancer medicine for its propensity to inhibit growth and induce of apoptosis in human lung cancer cells

    Water Extract of Rice False Smut Balls Activates Nrf2/HO-1 and Apoptosis Pathways, Causing Liver Injury

    No full text
    Ustiloxins are vital cyclopeptide mycotoxins originally isolated from rice false smut balls that form in rice spikelets infected by the fungal pathogen Ustilaginoidea virens. The toxicity of the water extract of rice false smut balls (RBWE) remains to be investigated. Studies have shown that RBWE may be toxic to animals, but toxicological evidence is still lacking. In this study, we found that the IC50 values of RBWE to BNL CL.2 cells at 24 and 48 h were 40.02 and 30.11 μg/mL, respectively, with positive correlations with dose toxicity and time toxicity. After treatment with RBWE, the number of BNL CL.2 cells decreased significantly, and the morphology of BNL CL.2 cells showed atrophy and wall detachment. RBWE induced DNA presynthesis phase arrest of BNL CL.2 cells, increased the proportion of apoptotic cells and inhibited cell proliferation. RBWE up-regulated reactive oxygen species (ROS) levels and lowered mitochondrial membrane potentials. Additionally, Western blot and qRT-PCR results suggested that RBWE exerted the above effects by promoting the Nrf2/HO-1 and caspase-induced apoptosis pathways in vitro and in vivo. The contents of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total bile acids in the serum of mice from Institute of Cancer were significantly up-regulated by RBWE. At the same time, RBWE can lead to increases in ROS and malondialdehyde contents, decreases in contents of oxidized glutathione, glutathione and reduced glutathione, as well as decrease in catalase and superoxide dismutase activities in mouse liver tissues, demonstrating that oxidative stress occurred in mice. Moreover, liver damage was further detected by haematoxylin-eosin staining and electron microscopy to verify the damage to the mice caused by RBWE. In general, RBWE may cause hepatotoxicity in vivo and in vitro via the apoptosis pathway, which provides a reference for hepatotoxicity and its mechanism of action

    Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways

    No full text
    Glial fibrillary acidic protein (GFAP) is the principle intermediate filament (IF) protein in astrocytes. Mutations in the GFAP gene lead to Alexander disease (AxD), a rare, fatal neurological disorder characterized by the presence of abnormal astrocytes that contain GFAP protein aggregates, termed Rosenthal fibers (RFs), and the loss of myelin. All GFAP mutations cause the same histopathological defect, i.e. RFs, though little is known how the mutations affect protein accumulation as well as astrocyte function. In this study, we found that GFAP accumulation induces macroautophagy, a key clearance mechanism for prevention of aggregated proteins. This autophagic response is negatively regulated by mammalian target of rapamycin (mTOR). The activation of p38 MAPK by GFAP accumulation is in part responsible for the down-regulation of phosphorylated-mTOR and the subsequent activation of autophagy. Our study suggests that AxD mutant GFAP accumulation stimulates autophagy, in a manner regulated by p38 MAPK and mTOR signaling pathways. Autophagy, in turn, serves as a mechanism to reduce GFAP levels

    Widespread Alterations in Translation Elongation in the Brain of Juvenile Fmr1 Knockout Mice

    No full text
    Summary: FMRP (fragile X mental retardation protein) is a polysome-associated RNA-binding protein encoded by Fmr1 that is lost in fragile X syndrome. Increasing evidence suggests that FMRP regulates both translation initiation and elongation, but the gene specificity of these effects is unclear. To elucidate the impact of Fmr1 loss on translation, we utilize ribosome profiling for genome-wide measurements of ribosomal occupancy and positioning in the cortex of 24-day-old Fmr1 knockout mice. We find a remarkably coherent reduction in ribosome footprint abundance per mRNA for previously identified, high-affinity mRNA binding partners of FMRP and an increase for terminal oligopyrimidine (TOP) motif-containing genes canonically controlled by mammalian target of rapamycin-eIF4E-binding protein-eIF4E binding protein-eukaryotic initiation factor 4E (mTOR-4E-BP-eIF4E) signaling. Amino acid motif- and gene-level analyses both show a widespread reduction of translational pausing in Fmr1 knockout mice. Our findings are consistent with a model of FMRP-mediated regulation of both translation initiation through eIF4E and elongation that is disrupted in fragile X syndrome. : Silencing of Fmr1, the gene that encodes FMRP, causes fragile X syndrome. Das Sharma et al. used ribosome profiling in the cortex of 24-day-old Fmr1 knockout mice to dissect FMRP-mediated translational regulation. Fmr1 loss leads to a relief of translational pausing across a large number of genes. Keywords: fragile X syndrome, translational regulation, ribosome profilin
    corecore