168 research outputs found
Piptaderol From Piptadenia africana
A new glyceryl derivative (Glyceryl-1-hexacosanoate) and a flavone derivative (methyletherapigenin) were isolated from the stem bark extract of Piptadenia africana, a western Cameroonian plant species. Common terpenes like sitosterol, β-amyrin and eicosane were also isolated. These compounds were identified using physical and spectroscopic methods including mp, IR, 1H and 13C-NMR, DEPT, COSY, HMQC, HMBC, EI MS, HREI MS as well as some chemical transformations. The antibacterial activity of the extract, the fractions and the pure compounds is also discussed. Keywords: Piptadenia africana, Leguminoseae, Glyceryl-1-hexacosanoate, Methyletherapigenin, Chemotaxonomy, Antibacterial activity.African Journal of Traditional and Complementary Medicine Vol. 4 (3) 2007: pp. 294-29
Antimicrobial diterpenoids and triterpenoids from the stem bark of Croton macrostachys
Antimicrobial-guided fractionation of the EtOAc extract of the stem bark of Croton macrostachys afforded five known compounds including two lupane triterpenoids, lupeol (1) and betulin (2), and three clerodane diterpenoids, floridolide A (3), hardwickic acid (4) and 12-oxo-hardwickic acid (5). Their structures were elucidated on the basis of spectral studies and comparison with published data. The EtOAc extract and compounds 1, 2, 4 and 5 were evaluated for their antibacterial and antifungal activities by macro-dilutionmethod. The extract displayed significant antibacterial and antifungal activities (MIC = 31.25-1000 μg/ml). Betulin (2) and 12-oxo-hardwickic acid (5) were the most active compounds (MIC = 7.81-500 μg/ml). Themost sensitive microorganisms were Staphylococcus aureus ATCC 25922 for bacteria and two Candida species, Candida albicans ATCC 24433 and Candida krusei ATCC 6258, for fungi. The isolation of these active antibacterial and antifungal principles supports the use of C. macrostachys in traditional medicine for the treatment of microbial infections.Keywords: Croton macrostachys; Euphorbiaceae; triterpenes; diterpenes; antibacterial; antifungal
In Vitro Antiplasmodial Activity and Cytotoxicity of Extracts of Selected Medicinal Plants Used by Traditional Healers of Western Cameroon
Medicinal plants play a key role in malaria control in Africa, especially in remote areas where health
facilities are limited. In order to assess their acclaimed potentials, eleven extracts were prepared from
seven selected plants commonly used in Western Cameroon, and tested both for their antiplasmodial
activity and cytotoxicity. The antiplasmodial activity was assessed using Lactate Dehydrogenase
Assay (pLDH) and the cytotoxicity estimated on LLC-MK2 monkey kidney epithelial cells. Seven
extracts from five different plants were significantly active, with very weak or no cytotoxicity. The
Dacryodes edulis leaves showed the highest activity (IC50 of 6.45 μg/mL on 3D7 and 8.2 μg/mL on
DD2) followed by the leaves of Vernonia amygdalina (IC50 of 8.72 and 11.27 μg/mL on 3D7 and
DD2 resp.) and roots of V. amygdalina (IC50 of 8.72 μg/mL on 3D7), Coula edulis leaves
(IC50 of 13.80 μg/mL and 5.79 μg/mL on 3D7 and DD2 resp.), Eucalyptus globulus leaves
(IC50 of 16.80 μg/mL and 26.45 μg/mL on 3D7 and DD2) and Cuviera longiflora stem bark (IC50 of
20.24 μg/mL and 13.91 μg/mL on 3D7 and DD2). These findings justify the use of five of the seven
plants in malaria treatment by traditional healers of Western Cameroon
Antiplasmodial activities of some products from Turreanthus africanus (Meliaceae)
We investigated the antiplasmodial activity of some pure compounds of Turreanthus africanus (Meliaceae), a plant that is used in traditional medicine to treat malaria in Southwest Cameroon. A phytochemical analysis of the methylene chloride: methanol (1:1) extract of the seeds of the plant yielded seven compounds. Four of them, which were oils, were subjected to in vitro bioassays on Plasmodium falciparum F 32, chloroquine sensitive strain. Compound 1 (16-oxolabda-8 (17), 12(E)-dien-15-oic acid), showed the highest antiplasmodial activity, two others (methyl-14,15-epoxylabda-8 (17), 12(E)-diene-16-oate, and turreanin A), had moderate activity and one was inactive. These findings are consistent with the use of T. africanus in the traditional treatment of P. falciparum malaria. African Journal of Health Sciences Vol. 13 (1-2) 2008: pp. 32-3
Antiplasmodial Activities of Some Products from Turreanthus Africanus (Meliaceae)
We investigated the antiplasmodial activity of some pure compounds of
Turreanthus africanus (Meliaceae), a plant that is used in
traditional medicine to treat malaria in Southwest Cameroon. A
phytochemical analysis of the methylene chloride: methanol (1:1)
extract of the seeds of the plant yielded seven compounds. Four of
them, which were oils, were subjected to in vitro bioassays on
Plasmodium falciparum F 32, chloroquine sensitive strain. Compound 1
(16-oxolabda-8 (17), 12(E)-dien-15-oic acid), showed the highest
antiplasmodial activity, two others (methyl-14,15-epoxylabda-8 (17),
12(E)-diene-16-oate, and turreanin A), had moderate activity and one
was inactive. These findings are consistent with the use of T.
africanus in the traditional treatment of P. falciparum malaria
Electrospray deposition and direct patterning of polylactic acid nanofibrous microcapsules for tissue engineering
Electrospun nanofibers composed of biodegradable polymers are attractive candidates for cell culture scaffolds in tissue engineering. Their fine-meshed structures, resembling natural extracellular matrices, effectively interact with cell surfaces and promote cell proliferation. The application of electrospinning, however, is limited to two-dimensional (2D) or single tube-like scaffolds, and the fabrication of arbitrary three-dimensional (3D) scaffolds from electrospun nanofibers is still very difficult due to the fibers’ continuous and entangled form. To address this issue, in this paper, we describe the use of phase-separation-assisted electrospray and electrostatic focusing to perform continuous direct 3D patterning of nanofibrous microcapsules of biodegradable polylactic acid (PLA). These microcapsules exhibit fiber-particle duality because they are composed of nanofibers suitable for cell attachment while also being easy to handle as particles for direct 3D patterning. By varying the flow rate of the polymer solution and the humidity of the electrospray atmosphere during electrospraying, the diameter of the microcapsule and its surface porosity can be controlled. The utility of the direct-patterning process is demonstrated by fabricating high-aspect-ratio microscaffolds and subsequent cell cultures. The nanofibrous and hollow structure of the microcapsules combined with the direct 3D patterning process offers a new approach for fabricating tailor-made scaffolds for regenerative medicine
Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum
Abstract Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages.</p
Mitochondrial Damage in the Trabecular Meshwork Occurs Only in Primary Open-Angle Glaucoma and in Pseudoexfoliative Glaucoma
Open-angle glaucoma appears to be induced by the malfunction of the trabecular meshwork cells due to injury induced by oxidative damage and mitochondrial impairment. Here, we report that, in fact, we have detected mitochondrial damage only in primary open-angle glaucoma and pseudo-exfoliation glaucoma, among several glaucoma types compared.Mitochondrial damage was evaluated by analyzing the common mitochondrial DNA deletion by real-time PCR in trabecular meshwork specimens collected at surgery from glaucomatous patients and controls. Glaucomatous patients included 38 patients affected by various glaucoma types: primary open-angle, pigmented, juvenile, congenital, pseudoexfoliative, acute, neovascular, and chronic closed-angle glaucoma. As control samples, we used 16 specimens collected from glaucoma-free corneal donors. Only primary open-angle glaucoma (3.0-fold) and pseudoexfoliative glaucoma (6.3-fold) showed significant increases in the amount of mitochondrial DNA deletion. In all other cases, deletion was similar to controls.despite the fact that the trabecular meshwork is the most important tissue in the physiopathology of aqueous humor outflow in all glaucoma types, the present study provides new information regarding basic physiopathology of this tissue: only in primary open-angle and pseudoexfoliative glaucomas oxidative damage arising from mitochondrial failure play a role in the functional decay of trabecular meshwork
Ligand Mobility Modulates Immunological Synapse Formation and T Cell Activation
T cell receptor (TCR) engagement induces clustering and recruitment to the plasma membrane of many signaling molecules, including the protein tyrosine kinase zeta-chain associated protein of 70 kDa (ZAP70) and the adaptor SH2 domain-containing leukocyte protein of 76 kDa (SLP76). This molecular rearrangement results in formation of the immunological synapse (IS), a dynamic protein array that modulates T cell activation. The current study investigates the effects of apparent long-range ligand mobility on T cell signaling activity and IS formation. We formed stimulatory lipid bilayers on glass surfaces from binary lipid mixtures with varied composition, and characterized these surfaces with respect to diffusion coefficient and fluid connectivity. Stimulatory ligands coupled to these surfaces with similar density and orientation showed differences in their ability to activate T cells. On less mobile membranes, central supramolecular activation cluster (cSMAC) formation was delayed and the overall accumulation of CD3ζ at the IS was reduced. Analysis of signaling microcluster (MC) dynamics showed that ZAP70 MCs exhibited faster track velocity and longer trajectories as a function of increased ligand mobility, whereas movement of SLP76 MCs was relatively insensitive to this parameter. Actin retrograde flow was observed on all surfaces, but cell spreading and subsequent cytoskeletal contraction were more pronounced on mobile membranes. Finally, increased tyrosine phosphorylation and persistent elevation of intracellular Ca2+ were observed in cells stimulated on fluid membranes. These results point to ligand mobility as an important parameter in modulating T cell responses
- …