147 research outputs found
Esencijalni metali u biokemiji
The basic functions of essential metals are described. The metals are classified into two groups: mobile (ionic) and transition series metals. In the first group only calcium and magnesium are briefly discussed. For the metals of the transition series, the main biochemical functions are listed. Chromium is discussed at length. The main characteristics of manganese, iron, cobalt, nickel, copper, zinc, vanadium and molybdenum are listed. The significance of certain interactions is stressed.Opisane su temeljne biokemijske funkcije esencijalnih metala. Klasificirani su u dvije osnovne skupine: mobilni u ionizirajućem stanju i tranzicijski metali, koji su kovalentno vezani za bioligande. Od mobilnih esencijalnih metala posebno su istaknuti kalcij i magnezij. Opisana je uloga magnezija u procesu oksidativne fosforilacije te u sintezi nukleinskih kiselina i proteina. Manjak magnezija može dovesti do neuromuskularnih poremećenja. U drugoj skupini opisana je uloga kroma i to posebno trovaljanog i šesterovaljanog. Krom utiče na mnoge enzimske reakcije a stimulira i aktivnost renina. Krom igra značajnu ulogu u metabolizmu glukoze pod utjecajem inzulina, tako da se njegov manjak povezuje s poremećajem djelovanja inzulina. Mangan je esencijalan za rast i njegov se učinak ne može zamijeniti nekim drugim elementom. željezo se smatra najvažnijim esencijalnim metalom s raznolikim ulogama u biokompleksima. Kobalt se ističe svojom značajnom ulogom u građi vitamina B12. Nikal se veže za različite biološke strukture kao što su bjelančevine, nukleinske kiseline ili amino kiseline. Uloga mu se posebno ističe u transaminaciji te u strukturi i funkciji membrana. Bakar uz željezo ima značajnu ulogu u kataliziranju različitih reakcija posebice u metaboličkoj aktivnosti vezivnog tkiva. I cink je prisutan u mnogim enzimima, posebice u dehidrogenazama, aldolazama itd. I vanadij i molibden igraju značajnu ulogu u različitim katalitičkirn reakcijama. Premda su esencijalni metali u malenim dozama neophodni za normalno funkcioniranje organizma, njihova prevelika količina može dovesti do toksičnih učinaka
Mode of interaction of calcium oxalate crystal with human phosphate cytidylyltransferase 1: a novel inhibitor purified from human renal stone matrix
Nephrolithiasis is a common clinical disorder, and calcium oxalate (CaOx) is the principal crystalline component in approximately 75% of all renal stones. It is widely believed that proteins act as inhibitors of crystal growth and aggregation. Acidic amino acids present in these proteins play a significant role in the inhibition process. In this study, interaction of cal-cium oxalate with human phosphate cytidylyltrans-ferase 1(CCT), a novel calcium oxalate crystal growth inhibitor purified from human renal stone matrix has been elucidated in silico and involvement of acidic amino acids in the same. As only sequence of CCT is available, henceforth its 3-D structure was modeled via Homology modeling using Prime module of Schrodinger package. Molecular dynamic simulation of modeled protein with solvation was done by mac-romodel (Schrodinger). The quality of modeled pro-tein was validated by JCSG protein structure valida-tion (PROCHECK & ERRAT) server. To analyze the interaction of modeled protein CCT with calcium oxalate along with role played by acidic amino acids, ‘Docking simulation’ was done using MOE–Dock. Interaction between calcium oxalate and CCT was also studied by substituting acidic amino acid in the active sites of the protein with neutral and positively charged amino acids. The in silico analysis showed the bond formation between the acidic amino acids and calcium atom, which was further substantiated when substitution of these acidic amino acids with alanine, glycine, lysine, arginine and histidine com-pletely diminished the interaction with calcium ox-alate
Multi-plateau magnetization curves of one-dimensional Heisenberg ferrimagnets
Ground-state magnetization curves of ferrimagnetic Heisenberg chains of
alternating spins and are numerically investigated. Calculating several
cases of , we conclude that the spin- chain generally exhibits
magnetization plateaux even at the most symmetric point. In the double- or
more-plateau structure, the initial plateau is generated on a classical basis,
whereas the higher ones are based on a quantum mechanism.Comment: 6 pages, 6 figures embedded, to appear in Phys. Rev. B 01 August 200
Genome-Wide Association Study for Type 2 Diabetes in Indians Identifies a New Susceptibility Locus at 2q21
Indians undergoing socioeconomic and lifestyle transitions will
be maximally affected by epidemic of type 2 diabetes (T2D). We
conducted a two-stage genome-wide association study of T2D in
12,535 Indians, a less explored but high-risk group. We identified
a new type 2 diabetes–associated locus at 2q21, with the lead
signal being rs6723108 (odds ratio 1.31; P = 3.32 3 1029
). Imputation
analysis refined the signal to rs998451 (odds ratio 1.56;
P = 6.3 3 10212) within TMEM163 that encodes a probable vesicular
transporter in nerve terminals. TMEM163 variants also
showed association with decreased fasting plasma insulin and
homeostatic model assessment of insulin resistance, indicating
a plausible effect through impaired insulin secretion. The 2q21
region also harbors RAB3GAP1 and ACMSD; those are involved
in neurologic disorders. Forty-nine of 56 previously reported signals
showed consistency in direction with similar effect sizes in
Indians and previous studies, and 25 of them were also associated
(P , 0.05). Known loci and the newly identified 2q21 locus altogether
explained 7.65% variance in the risk of T2D in Indians. Our
study suggests that common susceptibility variants for T2D are
largely the same across populations, but also reveals a population-specific
locus and provides further insights into genetic architecture
and etiology of T2D
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
BACKGROUND:
Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally.
METHODS:
The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950.
FINDINGS:
Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development.
INTERPRETATION:
This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing
- …