7 research outputs found

    A Practical Approach for Identity-Embodied 3D Artistic Face Modeling

    No full text
    This paper describes a practical technique for 3D artistic face modeling where a human identity can be inserted into a 3D artistic face. This approach can automatically extract the human identity from a 3D human face model and then transfer it to a 3D artistic face model in a controllable manner. Its core idea is to construct a face geometry space and a face texture space based on a precollected 3D face dataset. Then, these spaces are used to extract and blend the face models together based on their facial identities and styles. This approach can enable a novice user to interactively generate various artistic faces quickly using a slider control. Also, it can run in real-time on an off-the-shelf computer without GPU acceleration. This approach can be broadly used in various 3D artistic face modeling applications such as a rapid creation of a cartoon crowd with different cartoon characters

    A Novel Visualization System for Expressive Facial Motion Data Exploration

    No full text
    Facial emotions and expressive facial motions have become an intrinsic part of many graphics systems and human computer interaction applications. The dynamics and high dimensionality of facial motion data make its exploration and processing challenging. In this paper, we propose a novel visualization system for expressive facial motion data exploration. Based on Principal Component Analysis (PCA) dimensionality reduction on anatomical facial sub regions, high dimensional facial motion data is mapped to 3D spaces. We further rendered it as colored 3D trajectories and color represents different emotion. We design an intuitive interface to allow users effectively explore and analyze high dimensional facial motion spaces. The applications of our visualization system on novel facial motion synthesis and emotion recognition are demonstrated

    āļāļēāļĢāļžāļąāļ’āļ™āļēāļĢāļ°āļšāļšāļŠāđāļāļ™āļ§āļąāļ•āļ–āļļāđ€āļžāļ·āđˆāļ­āļāļēāļĢāļˆāļąāļ”āđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļžāļ·āđ‰āļ™āļœāļīāļ§āļŠāļēāļĄāļĄāļīāļ•āļīāļĢāļēāļĒāļĨāļ°āđ€āļ­āļĩāļĒāļ”āļŠāļđāļ‡āļŠāļģāļŦāļĢāļąāļšāļžāļ·āđ‰āļ™āļœāļīāļ§āđāļšāļšāļĢāļ°āļ™āļēāļšāđāļĨāļ°āđ„āļĄāđˆāļĢāļ°āļ™āļēāļšDevelopment of an Object Scanning System for Storing the High Definition 3D Data of the Planar and Non-Planar Surfaces

    No full text
    āļ›āļąāļˆāļˆāļļāļšāļąāļ™āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļ—āļēāļ‡āļ”āđ‰āļēāļ™āļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāļāļĢāļēāļŸāļīāļāļŠāđŒāļĄāļĩāļ„āļ§āļēāļĄāđ€āļˆāļĢāļīāļāļāđ‰āļēāļ§āļŦāļ™āđ‰āļēāđ€āļ›āđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļĄāļēāļāļˆāļķāļ‡āđ€āļ›āđ‡āļ™āļ—āļĩāđˆāļĄāļēāļ‚āļ­āļ‡āļ„āļ§āļēāļĄāļ•āđ‰āļ­āļ‡āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļēāļĄāļĄāļīāļ•āļīāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļĄāļˆāļĢāļīāļ‡āđ€āļžāļ·āđˆāļ­āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđāļŠāļ”āļ‡āļœāļĨāļšāļ™āļŦāļ™āđ‰āļēāļˆāļ­āļ‚āļ­āļ‡āļ­āļļāļ›āļāļĢāļ“āđŒāļ­āļīāđ€āļĨāđ‡āļāļ—āļĢāļ­āļ™āļīāļāļŠāđŒāđƒāļ™āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļ—āļēāļ‡āļ”āđ‰āļēāļ™āļ āļēāļžāļĒāļ™āļ•āļĢāđŒ āļ§āļīāļ”āļĩāđ‚āļ­āđ€āļāļĄ āđāļ­āļ™āļīāđ€āļĄāļŠāļąāļ™ āļ›āļĢāļ°āļ•āļīāļĄāļēāļāļĢāļĢāļĄ āļŠāļ–āļēāļ›āļąāļ•āļĒāļāļĢāļĢāļĄ āļāļēāļĢāļ­āļ­āļāđāļšāļšāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒ āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāļ„āļ§āļēāļĄāļˆāļĢāļīāļ‡āđ€āļŠāļĢāļīāļĄāđāļĨāļ°āļ„āļ§āļēāļĄāļˆāļĢāļīāļ‡āđ€āļŠāļĄāļ·āļ­āļ™ āđāļĨāļ°āļāļēāļĢāļŠāļąāđˆāļ‡āļžāļīāļĄāļžāđŒāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļēāļĄāļĄāļīāļ•āļīāļœāđˆāļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļžāļīāļĄāļžāđŒāļŠāļēāļĄāļĄāļīāļ•āļī āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļ­āļ­āļāđāļšāļšāđāļĨāļ°āļžāļąāļ’āļ™āļēāļĢāļ°āļšāļšāļŠāđāļāļ™āļ§āļąāļ•āļ–āļļāđ€āļžāļ·āđˆāļ­āļāļēāļĢāļˆāļąāļ”āđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļžāļ·āđ‰āļ™āļœāļīāļ§āļŠāļēāļĄāļĄāļīāļ•āļīāļĢāļēāļĒāļĨāļ°āđ€āļ­āļĩāļĒāļ”āļŠāļđāļ‡āļŠāļģāļŦāļĢāļąāļšāļžāļ·āđ‰āļ™āļœāļīāļ§āđāļšāļšāļĢāļ°āļ™āļēāļšāđāļĨāļ°āđ„āļĄāđˆāļĢāļ°āļ™āļēāļšāđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢāļ–āđˆāļēāļĒāļ āļēāļžāļˆāļēāļāļ§āļąāļ•āļ–āļļāļˆāļĢāļīāļ‡āļŦāļĨāļēāļĒāļĄāļļāļĄāļĄāļ­āļ‡āļ”āđ‰āļ§āļĒāļāļĨāđ‰āļ­āļ‡āļ”āļīāļˆāļīāļ—āļąāļĨ DSLR āđ€āļžāļ·āđˆāļ­āđ€āļāđ‡āļšāļ āļēāļžāļ„āļ§āļēāļĄāļĨāļ°āđ€āļ­āļĩāļĒāļ”āļŠāļđāļ‡āđ‚āļ”āļĒāļĄāļĩāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ›āļĢāļąāļšāļŠāļĩāļ‚āļ­āļ‡āļ āļēāļžāļ§āļąāļ•āļ–āļļāđƒāļŦāđ‰āļ•āļĢāļ‡āļāļąāļšāļŠāļĩāļˆāļĢāļīāļ‡āļ‚āļ­āļ‡āļ§āļąāļ•āļ–āļļāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļŠāļ­āļšāđ€āļ—āļĩāļĒāļšāļŠāļĩāļˆāļēāļāđāļœāļ™āļ āļđāļĄāļīāļ—āļ”āļŠāļ­āļšāļŠāļĩ 24 āļŠāļĩ (Color Checker) āđ‚āļ”āļĒāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ–āđˆāļēāļĒāļ āļēāļžāļ§āļąāļ•āļ–āļļāļˆāļ°āđāļšāđˆāļ‡āļ­āļ­āļāđ€āļ›āđ‡āļ™āļŠāļ­āļ‡āļŠāđˆāļ§āļ™āļŦāļĨāļąāļ āļŠāđˆāļ§āļ™āļ—āļĩāđˆāļŦāļ™āļķāđˆāļ‡āđƒāļŠāđ‰āļāļĨāđˆāļ­āļ‡āļŠāļ•āļđāļ”āļīāđ‚āļ­āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ•āļīāļ”āļ•āļąāđ‰āļ‡āđāļ–āļšāļŦāļĨāļ­āļ”āđ„āļŸāđāļ­āļĨāļ­āļĩāļ”āļĩāļŠāļĩāļ‚āļēāļ§āđƒāļ™āļāļēāļĢāļ–āđˆāļēāļĒāļ āļēāļžāļ§āļąāļ•āļ–āļļāđāļšāļš 360 āļ­āļ‡āļĻāļēāđ€āļžāļ·āđˆāļ­āļ™āļģāđ„āļ›āļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ āļēāļžāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļāļēāļĢāļĢāļąāļ‡āļ§āļąāļ”āļ”āđ‰āļ§āļĒāļ āļēāļž (Photogrammetry) āđ€āļžāļ·āđˆāļ­āļŠāļĢāđ‰āļēāļ‡āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļēāļĄāļĄāļīāļ•āļīāđāļĨāļ°āļ āļēāļžāđāļœāļ™āļ—āļĩāđˆāļŠāļĩāļžāļ·āđ‰āļ™āļœāļīāļ§āļ‚āļ­āļ‡āļ§āļąāļ•āļ–āļļ āļŠāđˆāļ§āļ™āļ—āļĩāđˆāļŠāļ­āļ‡āđƒāļŠāđ‰āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāđāļāļ™āđ€āļ™āļ­āļĢāđŒāļŠāļēāļĄāļĄāļīāļ•āļīāļŠāļģāļŦāļĢāļąāļšāļŠāđāļāļ™āļžāļ·āđ‰āļ™āļœāļīāļ§āđƒāļ™āļāļēāļĢāļ–āđˆāļēāļĒāļ āļēāļžāļ§āļąāļ•āļ–āļļāđƒāļ™āļĄāļļāļĄāļĄāļ­āļ‡āđ€āļ”āļĩāļĒāļ§āļāļąāļ™āđāļ•āđˆāļ­āļĒāļđāđˆāļ āļēāļĒāđƒāļ•āđ‰āļāļēāļĢāļŠāđˆāļ­āļ‡āļŠāļ§āđˆāļēāļ‡āļ‚āļ­āļ‡āđāļŠāļ‡āļˆāļēāļāļŦāļĨāļ­āļ”āđ„āļŸ 8 āļ”āļ§āļ‡āđƒāļ™āļ—āļīāļĻāļ—āļēāļ‡āļ—āļĩāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āđ€āļžāļ·āđˆāļ­āļ™āļģāļ āļēāļžāđ„āļ›āļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ āļēāļžāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ‚āļŸāđ‚āļ•āđ€āļĄāļ•āļĢāļīāļāļŠāđ€āļ•āļ­āļĢāļīāđ‚āļ­ (Photometric Stereo) āļŠāļģāļŦāļĢāļąāļšāļŠāļĢāđ‰āļēāļ‡āļ āļēāļžāđāļœāļ™āļ—āļĩāđˆāļŠāļĩāļžāļ·āđ‰āļ™ āļ āļēāļžāđāļœāļ™āļ—āļĩāđˆāđāļ™āļ§āļ‰āļēāļ āđāļĨāļ°āļ āļēāļžāđāļœāļ™āļ—āļĩāđˆāļ„āļ§āļēāļĄāļŠāļđāļ‡ āļŠāļļāļ”āļ—āđ‰āļēāļĒāđ€āļĄāļ·āđˆāļ­āļ™āļģāļ āļēāļžāđāļœāļ™āļ—āļĩāđˆāļ•āđˆāļēāļ‡āđ† āđ„āļ›āđƒāļŠāđˆāđƒāļŦāđ‰āđāļāđˆāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļēāļĄāļĄāļīāļ•āļīāđāļĨāđ‰āļ§āļ—āļģāļāļēāļĢāđ€āļĢāļ™āđ€āļ”āļ­āļĢāđŒāļ āļēāļžāđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļēāļĄāļĄāļīāļ•āļīāļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āđāļšāļšāļˆāļģāļĨāļ­āļ‡āļŠāļēāļĄāļĄāļīāļ•āļīāļ—āļĩāđˆāļŠāļĢāđ‰āļēāļ‡āļ‚āļķāđ‰āļ™āļĄāļĩāļ„āļ§āļēāļĄāļ™āļđāļ™āļŠāļđāļ‡āļŦāļĢāļ·āļ­āļ™āļđāļ™āļ•āđˆāļģ āļĢāļ­āļĒāļ‚āļĢāļļāļ‚āļĢāļ° āļĢāđˆāļ­āļ‡āļĨāļķāļ āļĨāļ§āļ”āļĨāļēāļĒāļ•āđˆāļēāļ‡āđ† āđāļĨāļ°āļŠāļĩāļžāļ·āđ‰āļ™āļœāļīāļ§āļ—āļĩāđˆāļ›āļĢāļēāļāļāļ­āļĒāļđāđˆāļšāļ™āļžāļ·āđ‰āļ™āļœāļīāļ§āļĄāļĩāļ„āļ§āļēāļĄāļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļ§āļąāļ•āļ–āļļāļˆāļĢāļīāļ‡Computer graphics technologies are significantly advanced. This results in the requirements for 3D models that are realistic in order to display on the screens of the electronic devices, in the movie, video game, animation, sculpture, architecture, product design, augmented reality (ar), and virtual reality (vr) technologies industries as well as to print the 3D models through 3D printers. The purpose of this research study is to design and develop the object scanning system for storing the high definition 3D data of the planar and non-planar surfaces by taking the photos of real objects in many angles with the DSLR digital camera to store high definition photos. The colors of the photos of the objects were adjusted with the color calibration method from the color checker with 24 colors. To take photos, the photos of the objects were divided into two main parts. For the first part, the studio camera with white LED was used for taking 360 degree photos being processed with photogrammetry in order to create 3D models and texture maps of the objects. For the second part, a 3D scanner was used in order to scan the surfaces of the objects at the same angle with the different directions of lights from eight light bulbs in order to process the photos with photometric stereo for creating base color maps, normal maps and heightmaps. Finally, the map photos were inputted in the 3D models. Then, the 3D models were rendered. As a result, the 3D models had high reliefs, bas reliefs, rugged surfaces, deep grooves and patterns. Additionally, the colors on the surfaces were consistent with the real objects
    corecore