48,207 research outputs found

    Theory of magnetotunneling spectroscopy in spin triplet p-wave superconductors

    Full text link
    We study the influence of a magnetic field HH on the zero-bias conductance peak (ZBCP) due to zero-energy Andreev bound state (ZES) in normal metal / unconventional superconductor. For p-wave junctions, ZBCP does not split into two by HH even for sufficiently low transparent junctions, where ZBCP clearly splits for d-wave. This unique property originates from the fact that for p-wave superconductors, perpendicularly injected quasiparticle form ZES, which contribute most dominantly on the tunneling conductance. In addition, we show that for pxp_{x}+ipyp_{y}-wave superconductor junctions, the height of ZBCP is sensitive to HH due to the formation of broken time reversal symmetry state. We propose that tunneling spectroscopy in the presence of magnetic field, i.e.i.e., magnetotunnelingmagnetotunneling, is an promising method to determine the pairing symmetry of unconventional superconductors.Comment: 4 pages, 6 figures, using jpsj2.cl

    Contribution of Type Ia and Type II Supernovae for Intra-Cluster Medium Enrichment

    Full text link
    The origin of the chemical composition of the intracluster medium (ICM) is discussed in this paper. In particular, the contribution from Type Ia supernovae (SNe Ia) to the ICM enrichment is shown to exist by adopting the fitting formulas which have been used in the analysis of the solar system abundances. Our analysis means that we can use the frequency of SNe Ia relative to SNe II as the better measure than MFe,SNIa/MFe,totalM_{Fe, SN Ia}/M_{Fe, total} for estimating the contribution of SNe Ia. Moreover, the chemical compositions of ICMs are shown to be similar to that of the solar system abundances. We can also reproduce the sulfur/iron abundance ratio within a factor of 2, which means that the abundance problem of sulfur needs not to be emphasized too strongly. We need more precise observations to conclude whether ICMs really suffer the shortage problem of sulfur or not.Comment: 20 pages, LaTeX text and 15 postscript figures. Accepted for publication in Astrophysical Journa

    Temperature-dependence of spin-polarized transport in ferromagnet / unconventional superconductor junctions

    Full text link
    Tunneling conductance in ferromagnet / unconventional superconductor junctions is studied theoretically as a function of temperatures and spin-polarization in feromagnets. In d-wave superconductor junctions, the existence of a zero-energy Andreev bound state drastically affects the temperature-dependence of the zero-bias conductance (ZBC). In p-wave triplet superconductor junctions, numerical results show a wide variety in temperature-dependence of the ZBC depending on the direction of the magnetic moment in ferromagnets and the pairing symmetry in superconductors such as pxp_{x}, pyp_{y} and px+ipyp_{x}+ip_{y}-wave pair potential. The last one is a promising symmetry of Sr2_2RuO4_4. From these characteristic features in the conductance, we may obtain the information about the degree of spin-polarization in ferromagnets and the direction of the dd-vector in triplet superconductors
    corecore