74 research outputs found

    Salvage brachytherapy for seminal vesicle recurrence after initial brachytherapy for prostate cancer: a case report

    Get PDF
    BACKGROUND: To report the efficacy and safety of salvage brachytherapy for seminal vesicle recurrence after initial brachytherapy in a patient with prostate cancer. As far as we know, this is a first report of salvage brachytherapy for seminal vesicle recurrence in Japan. CASE PRESENTATION: A 70-year-old Japanese man with low-risk prostate cancer received low-dose-rate brachytherapy. Forty-two months after the seed implantation, he showed biochemical recurrence based on the nadir + 2 ng/mL definition. The prostate specific antigen (PSA) level was 5.11 ng/mL at 58 months after seed implantation. A saturation biopsy of the prostate showed no recurrence. Systemic screening also showed no distant metastases. However, T2-weighted magnetic resonance imaging (MRI) demonstrated a low intensity area at the base of the right seminal vesicle, which was strongly suggestive of recurrence. Sixty months after the initial therapy, a seminal vesicle biopsy confirmed recurrence with a Gleason score of 4 + 3 before salvage brachytherapy was performed. The prescribed dose was 145 Gy, the same as the dose of the initial therapy. One month later, the PSA level had rapidly declined to 0.898 ng/mL without androgen deprivation therapy. Ten months after the salvage brachytherapy, the PSA level reached 0.078 ng/mL. No adverse events were seen during the follow-up period. CONCLUSIONS: We experienced a patient who was successfully treated with salvage brachytherapy for seminal vesicle recurrence. Salvage brachytherapy is one of the promising therapeutic options for recurrence after initial brachytherapy

    N-ブチル-N-(4-ヒドロキシブチル)ニトロソアミン誘発膀胱癌マウスモデルを用いた膀胱内化学療法による局所及び全身の免疫応答

    Get PDF
    Intravesical bacillus Calmette-Guerin (BCG) treatment is the most common therapy to prevent progression and recurrence of non-muscle invasive bladder cancer (NMIBC). Although the immunoreaction elicited by BCG treatment is well documented, those induced by intravesical treatment with chemotherapeutic agents are much less known. We investigated the immunological profiles caused by mitomycin C, gemcitabine, adriamycin and docetaxel in the N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced orthotopic bladder cancer mouse model. Ninety mice bearing orthotopic bladder cancer induced by BBN were randomly divided into six groups and treated with chemotherapeutic agents once a week for four weeks. After last treatment, bladder and serum samples were analyzed for cell surface and immunological markers (CD4, CD8, CD56, CD204, Foxp3, and PD-L1) using immunohistochemistry staining. Serum and urine cytokine levels were evaluated by ELISA. All chemotherapeutic agents presented anti-tumor properties similar to those of BCG. These included changes in immune cells that resulted in fewer M2 macrophages and regulatory T cells around tumors. This result was compatible with those in human samples. Intravesical chemotherapy also induced systemic changes in cytokines, especially urinary interleukin (IL)-17A and granulocyte colony stimulating factor (G-CSF), as well as in the distribution of blood neutrophils, lymphocytes, and monocytes. Our findings suggest that intravesical treatment with mitomycin C and adriamycin suppresses protumoral immunity while enhancing anti-tumor immunity, possibly through the action of specific cytokines. A better understanding of the immunoreaction induced by chemotherapeutic agents can lead to improved outcomes and fewer side effects in intravesical chemotherapy against NMIBC.博士(医学)・甲第695号・平成31年3月15日Copyright: © 2017 Hori et al. This is an open access article distributed under the terms of the Creative Commons Attribution License(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    ラット膀胱での水吸収におけるアクアポリン-2の役割

    Get PDF
    AIM: We investigated the role of the bladder wall in permeating water, focusing on aquaporins. METHODS: Female Sprague-Dawley rats weighing 300 g were used to investigate the role of the bladder wall in saline permeation. Changes in intravesical fluid volume and sodium concentration were measured in the desmopressin acetate hydrate-loaded and control groups 3 h after administration. Bladders were resected to measure aquaporin-1, 2, and 3 gene expression using qRT-PCR. Additionally, the change of aquaporin-2 expression was measured using Western blotting and immunohistochemistry in intravesical aquaporin-2 siRNA-treated and control groups. RESULTS: Although the intravesical fluid volume and sodium concentration significantly decreased from 0 to 3 h (1.00 ± 0.00 vs 0.83 ± 0.08 mL, 157.80 ± 1.30 vs 146.8 ± 1.92 mEq/mL, P < 0.01, respectively in the control group), administration of desmopressin did not affect the extent of volume change. Aquaporin-2 expression was significantly higher in the 3-h distended bladders than in the empty bladder. Aquaporin-2 siRNA treatment suppressed aquaporin-2 expression and the change of intravesical fluid volume from 0 to 3 h (1.00 ± 0.00 and 0.99 ± 0.02 mL), which was related to the suppression of sodium concentration change in comparison with control siRNA treatment (149.6 ± 2.4 vs 143.6 ± 3.67 mEq/mL, P < 0.05). CONCLUSIONS: The rat urinary bladder absorbs water and salts under the full-filled condition. Aquaporin-2 plays an important role in the transport of water, accompanied by sodium concentration change. We demonstrated a part of the bladder absorption mechanism, which may lead to development of a new method for regulating bladder storage function.博士(医学)・甲第697号・平成31年3月15日© 2018 Wiley Periodicals, Inc.This is the pre-peer reviewed version of the following article: [https://onlinelibrary.wiley.com/doi/full/10.1002/nau.23715], which has been published in final form at [http://dx.doi.org/10.1002/nau.23715]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    Organic carboxylate salt-enabled alternative synthetic routes for bio-functional cyclic carbonates and aliphatic polycarbonates

    Get PDF
    Simple and efficient synthetic routes for functionalized cyclic carbonates are indispensable for the practical application of side-chain bio-functionalized aliphatic polycarbonates as biodegradable functional biomaterials. In this study, a six-membered cyclic carbonate with a triethylammonium carboxylate has been prepared in one step from 2,2-bis(methylol)propionic acid (bis-MPA). We have demonstrated the suitability of the organic carboxylate salt of the bis-MPA cyclic carbonate for esterification with alkyl bromides via the SN2 mechanism, leading to the formation of functionalized cyclic carbonate monomers. The esterification of the organic carboxylate salt proceeds efficiently when alkyl bromides with α-carbonyl, allyl, and benzyl groups are used. This approach enables a two-step synthesis of functionalized cyclic carbonates from bis-MPA. The organocatalyzed ring-opening polymerization of the resultant functionalized cyclic carbonates is effectively controlled, indicating that the synthetic process involving the organic carboxylate salt does not influence their polymerizability. The ether-functionalized aliphatic polycarbonates obtained from the organic carboxylate salt exhibit good antiplatelet properties, comparable to those of a previously developed blood-compatible aliphatic polycarbonate. The synthetic pathways exploiting organic carboxylate salts enable alternative shortcuts to functionalized cyclic carbonates from bis-MPA

    去勢抵抗性前立腺癌におけるKlothoγのドセタキセル抵抗性との関連と新規治療としての可能性

    Get PDF
    The Klotho (KL) gene was first identified as a potent aging suppressor. The KL family currently comprises of three proteins: α-Klotho (KLA), β-Klotho (KLB), and γ-Klotho (KLG). Many studies have shown that KLA and KLB participate in tumor progression or suppression, depending on the type of cancer; however, the relationship between KLG and prostate cancer has not yet been studied. Some studies have claimed that KL is correlated to sensitivity to chemotherapy. Here, we investigated the oncogenic potential of KLG in castration-resistant prostate cancer (CRPC). Immunohistochemical analysis using prostate biopsy specimens revealed that patients with high KLG expression in primary prostate cancer tissue had a significantly poor prognosis for overall survival. In addition, the prostate-specific antigen response rate after docetaxel (DTX) therapy in patients with high KLG expression was lower than that in patients with low KLG expression. To evaluate the potential of KLG as a therapeutic target in human prostate cancer, we generated a xenograft model of human CRPC cell line (PC-3) in male athymic mice. The animals were randomly divided into four groups as follows: i) control group (vehicle only); ii) DTX group (intraperitoneal administration); iii) small interfering RNA targeting KLG (KLG siRNA) group (intratumoral administration); and iv) a combination group (DTX plus KLG siRNA). After 3 weeks of treatment, the tumor weight and tumor Ki-67 labeling index were significantly lower in the KLG siRNA group and the combination group than in the control group. Sensitivity to DTX was increased upon treatment with KLG siRNA. These findings suggest that KLG expression in primary prostate cancer lesions is associated with resistance to DTX in CRPC and has potential as a diagnostic and therapeutic target for patients with CRPC.博士(医学)・甲第740号・令和2年3月16日Copyright: © Onishiet al. This is an open access article distributed under theterms of CreativeCommons Attribution License(https://creativecommons.org/licenses/by-nc-nd/4.0/)

    筋層浸潤性膀胱癌における壁浸潤長は予後予測因子であり、血清cell-free DNAと関連する

    Get PDF
    Background: We investigated the potential of the depth of invasion (DOI) as a prognostic factor in patients with muscle-invasive bladder cancer (MIBC) who underwent radical cystectomy (RC). Moreover, we examined the association between the preoperative levels of circulating cell-free DNA and DOI.博士(医学)・甲第876号・令和5年3月15

    膀胱癌細胞株において、ヘパラナーゼを阻害することにより、細胞浸潤、遊走、接着能を抑制する

    Get PDF
    Heparan sulfate proteoglycan syndecan-1, CD138, is known to be associated with cell proliferation, adhesion, and migration in malignancies. We previously reported that syndecan-1 (CD138) may contribute to urothelial carcinoma cell survival and progression. We investigated the role of heparanase, an enzyme activated by syndecan-1 in human urothelial carcinoma. Using human urothelial cancer cell lines, MGH-U3 and T24, heparanase expression was reduced with siRNA and RK-682, a heparanase inhibitor, to examine changes in cell proliferation activity, induction of apoptosis, invasion ability of cells, and its relationship to autophagy. A bladder cancer development mouse model was treated with RK-682 and the bladder tissues were examined using immunohistochemical analysis for Ki-67, E-cadherin, LC3, and CD31 expressions. Heparanase inhibition suppressed cellular growth by approximately 40% and induced apoptosis. The heparanase inhibitor decreased cell activity in a concentration-dependent manner and suppressed invasion ability by 40%. Inhibition of heparanase was found to suppress autophagy. In N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer mice, treatment with heparanase inhibitor suppressed the progression of cancer by 40%, compared to controls. Immunohistochemistry analysis showed that heparanase inhibitor suppressed cell growth, and autophagy. In conclusion, heparanase suppresses apoptosis and promotes invasion and autophagy in urothelial cancer.博士(医学)・乙第1506号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
    corecore