48,052 research outputs found

    Close-packed structures and phase diagram of soft spheres in cylindrical pores

    Get PDF
    It is shown for a model system consisting of spherical particles confined in cylindrical pores that the first ten close-packed phases are in one-to-one correspondence with the first ten ways of folding a triangular lattice, each being characterized by a roll-up vector like the single-walled carbon nanotube. Phase diagrams in pressure-diameter and temperature-diameter planes are obtained by inherent-structure calculation and molecular dynamics simulation. The phase boundaries dividing two adjacent phases are infinitely sharp in the low-temperature limit but are blurred as temperature is increased. Existence of such phase boundaries explains rich, diameter-sensitive phase behavior unique for cylindrically confined systems

    Interference Effects on Kondo-Assisted Transport through Double Quantum Dots

    Full text link
    We systematically investigate electron transport through double quantum dots with particular emphasis on interference induced via multiple paths of electron propagation. By means of the slave-boson mean-field approximation, we calculate the conductance, the local density of states, the transmission probability in the Kondo regime at zero temperature. It is clarified how the Kondo-assisted transport changes its properties when the system is continuously changed among the serial, parallel and T-shaped double dots. The obtained results for the conductance are explained in terms of the Kondo resonances influenced by interference effects. We also discuss the impacts due to the spin-polarization of ferromagnetic leads.Comment: 9 pages, 11 figures ; minor corrections and references adde

    A Viscoelastic model of phase separation

    Full text link
    We show here a general model of phase separation in isotropic condensed matter, namely, a viscoelastic model. We propose that the bulk mechanical relaxation modulus that has so far been ignored in previous theories plays an important role in viscoelastic phase separation in addition to the shear relaxation modulus. In polymer solutions, for example, attractive interactions between polymers under a poor-solvent condition likely cause the transient gellike behavior, which makes both bulk and shear modes active. Although such attractive interactions between molecules of the same component exist universally in the two-phase region of a mixture, the stress arising from attractive interactions is asymmetrically divided between the components only in dynamically asymmetric mixtures such as polymer solutions and colloidal suspensions. Thus, the interaction network between the slower components, which can store the elastic energy against its deformation through bulk and shear moduli, is formed. It is the bulk relaxation modulus associated with this interaction network that is primarily responsible for the appearance of the sponge structure peculiar to viscoelastic phase separation and the phase inversion. We demonstrate that a viscoelastic model of phase separation including this new effect is a general model that can describe all types of isotropic phase separation including solid and fluid models as its special cases without any exception, if there is no coupling with additional order parameter. The physical origin of volume shrinking behavior during viscoelastic phase separation and the universality of the resulting spongelike structure are also discussed.Comment: 14 pages, RevTex, To appear in Phys. Rev

    Strong magnetic field enhancement of spin triplet pairing arising from coexisting 2kF2k_F spin and 2kF2k_F charge fluctuations

    Full text link
    We study the effect of the magnetic field (Zeeman splitting) on the triplet pairing. We show generally that the enhancement of spin triplet pairing mediated by coexisting 2kF2k_F spin and 2kF2k_F charge fluctuations can be much larger than in the case of triplet pairing mediated by ferromagnetic spin fluctuations. We propose that this may be related to the recent experiment for (TMTSF)2_2ClO4_4, in which a possibility of singlet to triplet pairing transition has been suggested.Comment: 5 page

    Nonlinear Pseudo-Supersymmetry in the Framework of N-fold Supersymmetry

    Get PDF
    We recall the importance of recognizing the different mathematical nature of various concepts relating to PT-symmetric quantum theories. After clarifying the relation between supersymmetry and pseudo-supersymmetry, we prove generically that nonlinear pseudo-supersymmetry, recently proposed by Sinha and Roy, is just a special case of N-fold supersymmetry. In particular, we show that all the models constructed by these authors have type A 2-fold supersymmetry. Furthermore, we prove that an arbitrary one-body quantum Hamiltonian which admits two (local) solutions in closed form belongs to type A 2-fold supersymmetry, irrespective of whether or not it is Hermitian, PT-symmetric, pseudo-Hermitian, and so on.Comment: 10 pages, no figures; typos correcte

    Correlated electron transport through double quantum dots coupled to normal and superconducting leads

    Full text link
    We study Andreev transport through double quantum dots connected in series normal and superconducting (SC) leads, using the numerical renormalization group. The ground state of this system shows a crossover between a local Cooper-pairing singlet state and a Kondo singlet state, which is caused by the competition between the Coulomb interaction and the SC proximity. We show that the ground-state properties reflect this crossover especially for small values of the inter-dot coupling tt, while in the opposite case, for large tt, another singlet with an inter-dot character becomes dominant. We find that the conductance for the local SC singlet state has a peak with the unitary-limit value 4e2/h4e^2/h. In contrast, the Andreev reflection is suppressed in the Kondo regime by the Coulomb interaction. Furthermore, the conductance has two successive peaks in the transient region of the crossover. It is further elucidated that the gate voltage gives a different variation into the crossover. Specifically, as the energy level of the dot that is coupled to the normal lead varies, the Kondo screening cloud is deformed to a long-range singlet bond.Comment: 11 pages, 10 figure

    Pairing Symmetry of CeCoIn5_5 Detected by In-plane Torque Measurements

    Full text link
    In-plane torque measurements were performed on heavy fermion CeCoIn5_5 single crystals in the temperature TT range 1.8 K T10\leq T \leq 10 K and applied magnetic field HH up to 14 T. The normal-state torque is given by τnH4(1+T/TK)1sin4ϕ\tau_n \propto H^4(1+T/T_K)^{-1}\sin 4\phi. The reversible part of the mixed-state torque, obtained after subtracting the corresponding normal state torque, shows also a four-fold symmetry. In addition, sharp peaks are present in the irreversible torque at angles of π/\pi/4, 3π\pi/4, 5π\pi/4, 7π\pi/4, etc. Both the four-fold symmetry in the reversible torque and the sharp peaks in the irreversible torque of the mixed state imply dxyd_{xy} symmetry of the superconducting order parameter. The field and temperature dependences of the reversible mixed-state torque provide further evidence for dxyd_{xy} wave symmetry. The four-fold symmetry in the normal state has a different origin since it has different field and temperature dependences than the one in the mixed state. The possible reasons of the normal state four-fold symmetry are discussed

    Cosmic censorship in overcharging a Reissner-Nordstr\"{o}m black hole via charged particle absorption

    Full text link
    There is a claim that a static charged black hole (Reissner-Nordstr\"{o}m black hole) can be overcharged by absorbing a charged test particle. If it is true, it might give a counter example to the weak cosmic censorship conjecture, which states that spacetime singularities are never observed by a distant observer. However, so far the proposed process has only been analyzed within a test particle approximation. Here we claim that the back reaction effects of a charged particle cannot be neglected when judging whether the suggested process is really a counter example to the cosmic censorship conjecture or not. Furthermore, we argue that all the back reaction effects can be properly taken into account when we consider the trajectory of a particle on the border between the plunge and bounce orbits. In such marginal cases we find that the Reissner-Nordstr\"{o}m black hole can never be overcharged via the absorption of a charged particle. Since all the plunge orbits are expected to have a higher energy than the marginal orbit, we conclude that there is no supporting evidence that indicates the violation of the cosmic censorship in the proposed overcharging process.Comment: 18 pages, revtex4, minor revision and reference added, version to appear in PR

    On broad iron K-alpha lines in Seyfert 1 galaxies

    Full text link
    The X-ray spectrum obtained by Tanaka et al from a long observation of the active galaxy MCG63015-6-30-15 shows a broad iron Kα\alpha line skewed to low energies. The simplest interpretation of the shape of the line is that it is due to doppler and gravitational redshifts from the inner parts of a disk about a massive black hole. Similarly broad lines are evident in shorter observations of several other active galaxies. In this paper we investigate other line broadening and skewing mechanisms such as Comptonization in cold gas and doppler shifts from outflows. We have also fitted complex spectral models to the data of MCG63015-6-30-15 to see whether the broad skewed line can be mimicked well by other absorption or emission features. No satisfactory mechanism or spectral model is found, thus strengthening the relativistic disk line model.Comment: uuencoded compressed postscript. The preprint is also available at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    Angular dependence of Josephson currents in unconventional superconducting junctions

    Get PDF
    Josephson effect in junctions between unconventional superconductors is studied theoretically within the model describing the effects of interface roughness. The particularly important issue of applicability of the frequently used Sigrist-Rice formula for Josephson current in d-wave superconductor / insulator / d-wave superconductor junctions is addressed. We show that although the SR formula is not applicable in the ballistic case, it works well for rough interfaces when the diffusive normal metal regions exist between the d-wave superconductor and the insulator. It is shown that the SR approach only takes into account the component of the d-wave pair potential symmetric with respect to an inversion around the plane perpendicular to the interface. Similar formula can be derived for general unconventional superconductors with arbitrary angular momentum l.Comment: 4 pages, 4 figure
    corecore