24 research outputs found
Dupilumab for Chronic Prurigo: Case Series on Effectiveness, Safety, and Quality of Life
Background: Chronic prurigo (CPG) is a pruritic skin disease, characterized by an itch-scratch cycle and scarring. It reduces patients’ quality of life (QoL). Dupilumab is a monoclonal human IgG antibody that inhibits signaling of the interleukin 4 (IL-4) and interleukin 13 (IL-13) pathways through blockade of the IL-4 receptor. Patients with CPG who receive dupilumab often report great improvement in itch and overall QoL. We therefore reviewed our experience in order to follow up on QoL, safety, and treatment response in patients with CPG who received dupilumab.
Methods: We conducted a real-world retrospective single-center case series. Outcomes were assessed by phone interviews and photographs using validated questionnaires and scores. Demographic data were obtained from the hospital files. Follow-up was up to 2 years. We assessed QoL with the Dermatology Life Quality Index (DLQI) and the Itchy quality of life questionnaire (ItchyQoL). Numerical Rating Scale (NRS) was used to assess itch. Prurigo lesions were documented with the Prurigo activity and severity score (PAS).
Results: Ten patients were included in this study. Results were reported up to 2 years after treatment with dupilumab. The response variables for DLQI, ItchyQoL, NRS, and PAS analyses showed a statistically significant decrease over time (DLQI: p ≤ 0.0001 [−0.84; −1.27], ItchyQoL: p ≤ 0.0001 [−9.89; −18.69], NRS maximum and average: p ≤ 0.0001 [−0.52; −0.86] and p ≤ 0.0001 [−0.55; −0.94], and PAS number of lesions: p = 0.0005 [−1.70; −5.28]). The percent decrease after 1 year of treatment (this estimate is based on model estimates) ranges from −42% to −82%. Four (40%) patients reported mild side effects. No serious side effects were reported.
Conclusion: Dupilumab treatment of CGP for up to 2 years is associated with improved QoL and less itching
Incorporating spatial and temporal variability in analyses of the relationship between biodiversity and ecosystem functioning
In the last few decades, a growing literature has examined how biodiversity influences ecosystem functioning. This body of work has greatly improved our understanding of ecosystem functioning and its modulation by biodiversity. In particular, there is nowa- days large consensus that biodiversity increases ecosystem productivity, and stabilises ecosystems. Early investigations were largely theoretical or involved simple experiments run in laboratory conditions, but over time biodiversity ecosystem-functioning experiments evolved to more realistic field experiments that better represent the real conditions found in natural ecosystems. In particular, these experiments are often run on larger spatial scales and over longer time frames allowing for the effect of environmental heterogeneity and temporal fluctuations to be explored. The designs of these experiments evolved along with the questions addressed in this field of research. However, the analytical tools used in the analyses of these experi- ments followed a slightly different path. In particular, most of the metrics currently used to analyse biodiversity ecosystem functioning experiments are not entirely suited to properly deal with the complexity of modern designs as they make a number of assumptions that are not met any more. In my thesis I developed a unified framework, based on the tailored use of Linear Mixed Effects Models, to analyse biodiversity-ecosystem functioning experiments such that the new complexities of these experiments can be taken into account. This thesis aimed to bring the focus of the analysis back to the biological interpretation of the results. I successfully applied my approach to several data sets. The framework developed here is expected to improve greatly our understanding of ecosystem functioning and how biodiversity modulates it. It also sheds new light on past research in this field. The great flexibility of the new approach makes it possible to let these experiments to evolve such that new biological questions can be addressed.</p
Incorporating spatial and temporal variability in analyses of the relationship between biodiversity and ecosystem functioning
In the last few decades, a growing literature has examined how biodiversity influences ecosystem functioning. This body of work has greatly improved our understanding of ecosystem functioning and its modulation by biodiversity. In particular, there is nowa- days large consensus that biodiversity increases ecosystem productivity, and stabilises ecosystems. Early investigations were largely theoretical or involved simple experiments run in laboratory conditions, but over time biodiversity ecosystem-functioning experiments evolved to more realistic field experiments that better represent the real conditions found in natural ecosystems. In particular, these experiments are often run on larger spatial scales and over longer time frames allowing for the effect of environmental heterogeneity and temporal fluctuations to be explored. The designs of these experiments evolved along with the questions addressed in this field of research. However, the analytical tools used in the analyses of these experi- ments followed a slightly different path. In particular, most of the metrics currently used to analyse biodiversity ecosystem functioning experiments are not entirely suited to properly deal with the complexity of modern designs as they make a number of assumptions that are not met any more. In my thesis I developed a unified framework, based on the tailored use of Linear Mixed Effects Models, to analyse biodiversity-ecosystem functioning experiments such that the new complexities of these experiments can be taken into account. This thesis aimed to bring the focus of the analysis back to the biological interpretation of the results. I successfully applied my approach to several data sets. The framework developed here is expected to improve greatly our understanding of ecosystem functioning and how biodiversity modulates it. It also sheds new light on past research in this field. The great flexibility of the new approach makes it possible to let these experiments to evolve such that new biological questions can be addressed.</p
From seed to plant to cob: analyses on maize data
<p>The scope of this series of documents is primarily didactic. <br><br>Data is collected from the following experiment: maize seeds are planted in different soils and at different depths. Day of germination is recorded, together with other variables. Seedlings, as well as seeds that have not sprouted yet, are then transferred in a field. Finally, for each maize plant, its height and the weight of the cob are recorded.<br><br>The reader can find information about <br>- the design of the experiment<br>- the data itself and how it was prepared<br>- some preliminary graphical analysis<br>- the modelling of different types of responses (normal linear models, binomial models, GAMs, normal linear models with random effects).</p><p>The data is accompanied by R scripts to reproduce all analyses.</p><p>Disclaimer: This is a first version, accomplished with a limited time budget. Updated versions might be uploaded in the future.</p>
Recommended from our members
Impact of Chronic Neonicotinoid Exposure on Honeybee Colony Performance and Queen Supersedure
Background
Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees.
Methodology/Principal Findings
To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (−28%) and brood (−13%), as well as a reduction in honey production (−29%) and pollen collections (−19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees’ genetic background.
Conclusions/Significance
Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet, significant detrimental short and long-term impacts on colony performance and queen fate suggest that neonicotinoids may contribute to colony weakening in a complex manner. Further, we highlight the importance of the genetic basis of neonicotinoid susceptibility in honeybees which can vary substantially
Pollen collections.
<p>Mean (±SD) fresh weights of pollen collections for control (black) and neonicotinoid-exposed (white) colonies over the course of the treatment period (pollen-trap contents were weighed in 2-2–3 days intervals throughout the study).</p
Dynamics of honeybee colony performance.
<p>Data of all three endpoints number of adult bees (A), eggs and larvae (B) and pupae (C) for the different pollen feeding treatments (black  =  control; red  =  neonicotinoids) and honeybee strains (circles  =  strain A; crosses  =  strain B). The data were obtained at four successive colony assessment dates (X-axis subpanels within figures) performed before (Spring 2011) and directly after the 1.5 months of experimental pollen feeding (Summer 2011), 3.5 months after the treatment (Autumn 2011) and one year later (Spring 2012). Estimated numbers on the Y-axes are truncated for adult bees and pupae for better overview.</p
Addition of Conductive Materials to Support Syntrophic Microorganisms in Anaerobic Digestion
Syntrophy and interspecies electron transfer among different microbial groups occurs in anaerobic digestion, and many papers recently reported their positive effect on biogas and methane production. In this paper, we present the results on the effect of conductive material, i.e., graphene, PAC and biochar addition in 3.5 L batch experiments, analyzing the biogas production curve. A peculiar curve pattern occurred in the presence of conductive materials. Compared to the respective controls, the addition of graphene produced a biogas surplus of 33%, PAC 20% and biochar 8%. Microbial community molecular analysis showed that syntrophic microorganisms present in the inoculum were stimulated by the conductive material addition. Graphene also appears to promote an interspecies electron transfer between Geobacter sp. and ca. Methanofastidiosum. This paper contributes to the understanding of the DIET-related microbial community dynamic in the presence of graphene and PAC, which could be exploited to optimize biogas and methane production in real-scale applications
Estimating the Impact of Consecutive Blood Meals on Vector Competence of <i>Aedes albopictus</i> for Chikungunya Virus
The continuous expansion of Aedes albopictus in Europe and the increases in autochthonous arboviruses transmissions in the region urge a better understanding of the virus transmission dynamic. Recent work described enhanced chikungunya virus (CHIKV) dissemination in Aedes aegypti mosquitoes exposed to a virus-free blood meal three days after their infection with CHIKV. Our study investigated the impact of a second blood meal on the vector competence of Ae. albopictus from southern Switzerland infected with CHIKV. Seven-day-old Ae. albopictus females were exposed to CHIKV-spiked blood and incubated at constant (27 °C) and fluctuating (14–28 °C) temperatures. Four days post-infection (dpi), some of these females were re-fed with a non-infectious blood meal. Virus infectivity, dissemination, transmission rate, and efficiency were investigated at seven and ten dpi. No enhanced dissemination rate was observed among females fed a second time; however, re-fed females have shown higher transmission efficiency than those fed only once after seven days post-infection and incubated under a fluctuating temperature regime. Vector competence for CHIKV was confirmed in Ae. albopictus from southern Switzerland. We did not observe an increase in dissemination rates among mosquitoes fed a second time (second blood meal), regardless of the temperature regime