390 research outputs found

    One-Electron State of a Partially Ionized High-Z Ion

    Get PDF
    An effective potential of an isolated partially ionized high-Z ion, calculated within the framework of the statistical models of atoms, is injected into the one-electron Schrödinger equation, in view of evaluating the electron density and comparing it with the results of statistical models. Starting from this initial value, a self-consistent electron density is obtained on the basis of the density functional theory, where quantum natures of electrons are fully taken into account

    Objective evaluation method using multiple image analyses for panoramic radiography improvement

    Get PDF
    Introduction: In the standardization of panoramic radiography quality, the education and training of beginners on panoramic radiographic imaging are important. We evaluated the relationship between positioning error factors and multiple image analysis results for reproducible panoramic radiography. Material and methods: Using a panoramic radiography system and a dental phantom, reference images were acquired on the Frankfurt plane along the horizontal direction, midsagittal plane along the left-right direction, and for the canine on the forward-backward plane. Images with positioning errors were acquired with 1-5 mm shifts along the forward-backward direction and 2-10 degrees rotations along the horizontal (chin tipped high/low) and vertical (left-right side tilt) directions on the Frankfurt plane. The cross-correlation coefficient and angle difference of the occlusion congruent plane profile between the reference and positioning error images, peak signal-to-noise ratio (PSNR), and deformation vector value by deformable image registration were compared and evaluated. Results: The cross-correlation coefficients of the occlusal plane profiles showed the greatest change in the chin tipped high images and became negatively correlated from 6 degrees image rotation (r = -0.29). The angle difference tended to shift substantially with increasing positioning error, with an angle difference of 8.9 degrees for the 10 degrees chin tipped low image. The PSNR was above 30 dB only for images with a 1-mm backward shift. The positioning error owing to the vertical rotation was the largest for the deformation vector value. Conclusions: Multiple image analyses allow to determine factors contributing to positioning errors in panoramic radiography and may enable error correction. This study based on phantom imaging can support the education of beginners regarding panoramic radiography

    Evaluating the index of panoramic X-ray image quality using K-means clustering method

    Get PDF
    Background A panoramic X-ray image is generally considered optimal when the occlusal plane is slightly arched, presenting with a gentle curve. However, the ideal angle of the occlusal plane has not been determined. This study provides a simple evaluation index for panoramic X-ray image quality, built using various image and cluster analyzes, which can be used as a training tool for radiological technologists and as a reference for image quality improvement. Results A reference panoramic X-ray image was acquired using a phantom with the Frankfurt plane positioned horizontally, centered in the middle, and frontal plane centered on the canine teeth. Other images with positioning errors were acquired with anteroposterior shifts, vertical rotations of the Frankfurt plane, and horizontal left/right rotations. The reference and positioning-error images were evaluated with the cross-correlation coefficients for the occlusal plane profile, left/right angle difference, peak signal-to-noise ratio (PSNR), and deformation vector fields (DVF). The results of the image analyzes were scored for positioning-error images using K-means clustering analysis. Next, we analyzed the correlations between the total score, cross-correlation analysis of the occlusal plane curves, left/right angle difference, PSNR, and DVF. In the scoring, the positioning-error images with the highest quality were the ones with posterior shifts of 1 mm. In the analysis of the correlations between each pair of results, the strongest correlations (r = 0.7–0.9) were between all combinations of PSNR, DVF, and total score. Conclusions The scoring of positioning-error images using K-means clustering analysis is a valid evaluation indicator of correct patient positioning for technologists in training

    Activation of protein phosphatase 2A by cAMP-dependent protein kinase-catalyzed phosphorylation of the 74-kDa B″ (δ) regulatory subunit in vitro and identification of the phosphorylation sites

    Get PDF
    AbstractHuman erythrocyte protein phosphatase 2A, which comprises a 34-kDa catalytic C subunit, a 63-kDa regulatory A subunit and a 74-kDa regulatory B″ (δ) subunit, was phosphorylated at serine residues of B″ in vitro by cAMP-dependent protein kinase (A-kinase). In the presence and absence of 0.5 μM okadaic acid (OA), A-kinase gave maximal incorporation of 1.7 and 1.0 mol of phosphate per mol of B″, respectively. The Km value of A-kinase for CAB″ was 0.17±0.01 μM in the presence of OA. The major in vitro phosphorylation sites of B″ were identified as Ser-60, -75 and -573 in the presence of OA, and Ser-75 and -573 in the absence of OA. Phosphorylation of B″ did not dissociate B″ from CA, and stimulated the molecular activity of CAB″ toward phosphorylated H1 and H2B histones, 3.8- and 1.4-fold, respectively, but not toward phosphorylase a

    New dimeric flavans from gambir, an extract of Uncaria gambir

    Get PDF
    Three new dimeric flavans, catechin-(4 alpha -&#62; 8)-ent-epicatechin (7), gambirflavan D1 (8), and gambirflavan D2 (9), were isolated from gambir (an extract from the leaves and young twigs of Uncaria gambir), and their structures were determined based on spectroscopic and chemical data.</p

    Automated Assessment of Aortic and Main Pulmonary Arterial Diameters using Model-Based Blood Vessel Segmentation for Predicting Chronic Thromboembolic Pulmonary Hypertension in Low-Dose CT Lung Screening

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by obstruction of the pulmonary vasculature by residual organized thrombi. A morphological abnormality inside mediastinum of CTEPH patient is enlargement of pulmonary artery. This paper presents an automated assessment of aortic and main pulmonary arterial diameters for predicting CTEPH in low-dose CT lung screening. The distinctive feature of our method is to segment aorta and main pulmonary artery using both of prior probability and vascular direction which were estimated from mediastinal vascular region using principal curvatures of four-dimensional hyper surface. The method was applied to two datasets, 64 low-dose CT scans of lung cancer screening and 19 normal-dose CT scans of CTEPH patients through the training phase with 121 low-dose CT scans. This paper demonstrates effectiveness of our method for predicting CTEPH in low-dose CT screening

    Segmentation of aorta and main pulmonary artery of non-contrast CT images using U-Net for chronic thromboembolic pulmonary hypertension : evaluation of robustness to contacts with blood vessels

    Get PDF
    Enlargement of the pulmonary artery is a morphological abnormality of pulmonary hypertension patients. Diameters of the aorta and main pulmonary artery (MPA) are useful for predicting the presence of pulmonary hypertension. A major problem in the automatic segmentation of the aorta and MPA from non-contrast CT images is the invisible boundary caused by contact with blood vessels. In this study, we applied U-Net to the segmentation of the aorta and MPA from non-contrast CT images for normal and chronic thromboembolic pulmonary hypertension (CTEPH) cases and evaluated the robustness to the contacts between blood vessels. Our approach of the segmentation consists of three steps: (1) detection of trachea branch point, (2) cropping region of interest centered to the trachea branch point, and (3) segmentation of the aorta and MPA using U-Net. The segmentation performances were compared in seven methods: 2D U-Net, 2D U-Net with pre-trained VGG-16 encoder, 2D U-Net with pre-trained VGG-19 encoder, 2D Attention U-Net, 3D U-Net, an ensemble method of them, and our conventional method. The aorta and MPA segmentation methods using these U-Net achieved higher performance than a conventional method. Although the contact boundaries of blood vessels caused lower performance compared with the non-contact boundaries, the mean boundary distances were below about one pixel

    Imaging findings of granulocyte colony-stimulating factor-producing tumors: a case series and review of the literature

    Get PDF
    Granulocyte colony-stimulating factor (G-CSF)-producing tumors have an aggressive clinical course. Here, we report five cases of G-CSF-producing tumors and review the literature, focusing on imaging findings related to tumor-produced G-CSF. In addition to our cases, we identified 30 previous reports of G-CSF-producing tumors on which 18F-fluorodeoxyglucose positron emission tomography (FDG-PET)/CT, bone scintigraphy, or evaluation of bone marrow MR findings was performed. White blood cell count, serum C-reactive protein, and serum interleukin-6 were elevated in all cases for which these parameters were measured. G-CSF-producing tumors presented large necrotic masses (mean diameter 83.2 mm, range 17–195 mm) with marked FDG uptake (mean maximum standardized uptake value: 20.09). Diffuse FDG uptake into the bone marrow was shown in 28 of the 31 cases in which FDG-PET/CT was performed. The signal intensity of bone marrow suggested marrow reconversion in all seven MRI-assessable cases. Bone scintigraphy demonstrated no significant uptake, except in two cases with bone metastases. Splenic FDG uptake was increased in 8 of 10 cases in which it was evaluated. These imaging findings may reflect the effects of tumor-produced G-CSF. The presence of G-CSF-producing tumors should be considered in patients with cancer who show these imaging findings and marked inflammatory features of unknown origin

    Automated detection method of thoracic aorta calcification from non-contrast CT images using mediastinal anatomical label map

    Get PDF
    Progression of thoracic aortic calcification (TAC) has been shown to be associated with hard cardiovascular events including stroke and all-cause mortality as well as coronary events. In this study, we propose an automated detection method of TACs of non-contrast CT images using mediastinal anatomical label map. This method consists of two steps: (1) the construction of a mediastinal anatomical label map, and (2) the detection of TACs using the intensity and the mediastinal anatomical label map. The proposed method was applied to two non-contrast CT image datasets: 24 cases of chronic thromboembolic pulmonary hypertension (CTEPH) and 100 non-CTEPH cases of low-dose CT screening. The method was compared with two-dimensional U-Nets and the Swin UNETR. The results showed that the method achieved significantly higher F1 score of 0.937 than other methods for the non-CTEPH case dataset (p-value < 0.05, pairwise Wilcoxon signed rank test with Bonferroni correction)
    corecore