4,804 research outputs found
The cDNA and deduced amino acid sequence of the γ subunit of the L-type calcium channel from rabbit skeletal muscle
Complementary DNAs for the γ subunit of the calcium channel of rabbit skeletal muscle were isolated on the basis of peptide sequences derived from the purified protein. The deduced primary structure is without homology to other known protein sequences and is consistent with the γ subunit being an integral membrane protein
Broad-band photometric colors and effective temperature calibrations for late-type giants. II. Z<0.02
(Abridged) We investigate the effects of metallicity on the broad-band
photometric colors of late-type giants, and make a comparison of synthetic
colors with observed photometric properties of late-type giants over a wide
range of effective temperatures (T_eff=3500-4800 K) and gravities (log
g=0.0-2.5), at [M/H]=-1.0 and -2.0. The influence of metallicity on the
synthetic photometric colors is generally small at effective temperatures above
\~3800 K, but the effects grow larger at lower T_eff, due to the changing
efficiency of molecule formation which reduces molecular opacities at lower
[M/H]. To make a detailed comparison of the synthetic and observed photometric
colors of late type giants in the T_eff--color and color--color planes, we
derive a set of new T_eff--log g--color relations based on synthetic
photometric colors, at [M/H]=-0.5, -1.0, -1.5, and -2.0. While differences
between the new T_eff--color relations and those available from the literature
are typically well within ~100 K, effective temperatures predicted by the
scales based on synthetic colors tend to be slightly higher than those
resulting from the T_eff--color relations based on observations, with the
offsets up to ~100 K. This is clearly seen both at [M/H]=-1.0 and -2.0,
especially in the T_eff--(B-V) and T_eff--(V-K) planes. The consistency between
T_eff--log g--color scales based on synthetic colors calculated with different
stellar atmosphere codes is very good, with typical differences being well
within \Delta T_eff~70 K at [M/H]=-1.0 and \Delta T_eff~40 K at [M/H]=-2.0.Comment: 20 pages, 11 figures, A&A accepte
Resource-driven Substructural Defeasible Logic
Linear Logic and Defeasible Logic have been adopted to formalise different
features relevant to agents: consumption of resources, and reasoning with
exceptions. We propose a framework to combine sub-structural features,
corresponding to the consumption of resources, with defeasibility aspects, and
we discuss the design choices for the framework
Photometric colors of late-type giants: theory versus observations
To assess the current status in the theoretical modeling of the spectral
properties of late-type giants, we provide a comparison of synthetic
photometric colors of late-type giants (calculated with PHOENIX, MARCS and
ATLAS model atmospheres) with observations, at [M/H]=0.0 and -2.0. Overall,
there is a good agreement between observed and synthetic colors, and synthetic
colors and published Teff-color relations, both at [M/H]=0.0 and -2.0.
Deviations from the observed trends in Teff-color planes are generally within
\pm 150K (or less) in the effective temperature range Teff=3500-4800K.
Synthetic colors calculated with different stellar atmosphere models typically
agree to ~100K, within a large range of effective temperatures and gravities.
Some discrepancies are seen in the Teff-(B-V) plane below Teff~3800K at
[M/H]=0.0, due to difficulties in reproducing the 'turn-off' to the bluer
colors which is seen in the observed data at Teff~3600K. Note that at
[M/H]=-2.0 effective temperatures given by the scale of Alonso et al. (1999)
are generally lower than those resulting from other Teff-color relations based
both on observed and synthetic colors.Comment: 2 pages, 1 figure. Proceedings of the IAU Symposium 232 "The
Scientific Requirements for Extremely Large Telescopes", eds. P. Whitelock,
B. Leibundgut, and M. Dennefel
Supersymmetric Rotating Black Hole in a Compactified Spacetime
We construct a supersymmetric rotating black hole with asymptotically flat
four-dimensional spacetime times a circle, by superposing an infinite number of
BMPV black hole solutions at the same distance in one direction. The near
horizon structure is the same as that of the five-dimensional BMPV black hole.
The rotation of this black hole can exceed the Kerr bound in general relativity
(), if the size is small.Comment: 7 pages, 3 figures; v2: comparison with black ring removed, detailed
discussion of rotation added, refs. added, v3: minor corrections, version to
appear in PR
Determinants of an elevated pulmonary arterial pressure in patients with pulmonary arterial hypertension
Given the difficulty of diagnosing early-stage pulmonary arterial hypertension (PAH) due to the lack of signs and symptoms, and the risk of an open lung biopsy, the precise pathological features of presymptomatic stage lung tissue remain unknown. It has been suggested that the maximum elevation of the mean pulmonary arterial pressure (Ppa) is achieved during the early symptomatic stage, indicating that the elevation of the mean Ppa is primarily driven by the pulmonary vascular tone and/or some degree of pulmonary vascular remodeling completed during this stage. Recently, the examination of a rat model of severe PAH suggested that the severe PAH may be primarily determined by the presence of intimal lesions and/or the vascular tone in the early stage. Human data seem to indicate that intimal lesions are essential for the severely increased pulmonary arterial blood pressure in the late stage of the disease. However, many questions remain. For instance, how does the pulmonary hemodynamics change during the course of the disease, and what drives the development of severe PAH? Although it is generally acknowledged that both pulmonary vascular remodeling and the vascular tone are important determinants of an elevated pulmonary arterial pressure, which is the root cause of the time-dependent progression of the disease? Here we review the recent histopathological concepts of PAH with respect to the progression of the lung vascular disease
Exponentially growing solutions in homogeneous Rayleigh-Benard convection
It is shown that homogeneous Rayleigh-Benard flow, i.e., Rayleigh-Benard
turbulence with periodic boundary conditions in all directions and a volume
forcing of the temperature field by a mean gradient, has a family of exact,
exponentially growing, separable solutions of the full non-linear system of
equations. These solutions are clearly manifest in numerical simulations above
a computable critical value of the Rayleigh number. In our numerical
simulations they are subject to secondary numerical noise and resolution
dependent instabilities that limit their growth to produce statistically steady
turbulent transport.Comment: 4 pages, 3 figures, to be published in Phys. Rev. E - rapid
communication
Infrared Imaging of the Gravitational Lens PG 1115+080 with the Subaru Telescope
We present high spatial resolution images of the gravitational-lens system PG
1115+080 taken with the near-infrared camera (CISCO) on the Subaru telescope.
The FWHM of the combined image is in the -band, yielding spatial
resolution of after a deconvolution procedure. This is a first
detection of an extended emission adjacent to the A1/A2 components, indicating
the presence of a fairly bright emission region with a characteristic angular
radius of 5 mas (40 pc). The near-infrared image of the Einstein ring
was extracted in both the and bands. The color is found to be
significantly redder than that of a synthetic model galaxy with an age of 3
Gyr, the age of the universe at the quasar redshift.Comment: 11 pages, 6 figures. Accepted for publication in PASJ(2000
Structure–Function Mapping: Variability and Conviction in Tracing Retinal Nerve Fiber Bundles and Comparison to a Computational Model
yesPurpose: We evaluated variability and conviction in tracing paths of retinal nerve fiber bundles (RNFBs) in retinal images, and compared traced paths to a computational model that produces anatomically-customized structure–function maps.
Methods: Ten retinal images were overlaid with 24-2 visual field locations. Eight clinicians and 6 naïve observers traced RNFBs from each location to the optic nerve head (ONH), recording their best estimate and certain range of insertion. Three clinicians and 2 naïve observers traced RNFBs in 3 images, 3 times, 7 to 19 days apart. The model predicted 10° ONH sectors relating to each location. Variability and repeatability in best estimates, certain range width, and differences between best estimates and model-predictions were evaluated.
Results: Median between-observer variability in best estimates was 27° (interquartile range [IQR] 20°–38°) for clinicians and 33° (IQR 22°–50°) for naïve observers. Median certain range width was 30° (IQR 14°–45°) for clinicians and 75° (IQR 45°–180°) for naïve observers. Median repeatability was 10° (IQR 5°–20°) for clinicians and 15° (IQR 10°–29°) for naïve observers. All measures were worse further from the ONH. Systematic differences between model predictions and best estimates were negligible; median absolute differences were 17° (IQR 9°–30°) for clinicians and 20° (IQR 10°–36°) for naïve observers. Larger departures from the model coincided with greater variability in tracing.
Conclusions: Concordance between the model and RNFB tracing was good, and greatest where tracing variability was lowest. When RNFB tracing is used for structure–function mapping, variability should be considered
- …