25,089 research outputs found
Performance of Photosensors in the PandaX-I Experiment
We report the long term performance of the photosensors, 143 one-inch
R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the
first phase of the PandaX dual-phase xenon dark matter experiment. This is the
first time that a significant number of R11410 photomultiplier tubes were
operated in liquid xenon for an extended period, providing important guidance
to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers'
comment
Single View 3D Reconstruction under an Uncalibrated Camera and an Unknown Mirror Sphere
In this paper, we develop a novel self-calibration method for single view 3D reconstruction using a mirror sphere. Unlike other mirror sphere based reconstruction methods, our method needs neither the intrinsic parameters of the camera, nor the position and radius of the sphere be known. Based on eigen decomposition of the matrix representing the conic image of the sphere and enforcing a repeated eignvalue constraint, we derive an analytical solution for recovering the focal length of the camera given its principal point. We then introduce a robust algorithm for estimating both the principal point and the focal length of the camera by minimizing the differences between focal lengths estimated from multiple images of the sphere. We also present a novel approach for estimating both the principal point and focal length of the camera in the case of just one single image of the sphere. With the estimated camera intrinsic parameters, the position(s) of the sphere can be readily retrieved from the eigen decomposition(s) and a scaled 3D reconstruction follows. Experimental results on both synthetic and real data are presented, which demonstrate the feasibility and accuracy of our approach. © 2016 IEEE.postprin
KINETICS OF GRAIN-GROWTH OF YTTRIUM ALUMINUM GARNET FIBERS PREPARED BY SOL-GEL METHOD
The yttrium aluminum garnet (YAG) long fibers were prepared by the sol-gel method using aluminum chloride, aluminum powder, yttrium oxide and acetic acid as raw materials. The grain growth law is given by Dn – D0n = Kt (D0 = initial grain size, D = average grain size at time t, n = grain growth exponent and K = reaction constant). The grain growth exponent and activation energy of YAG fibers are ≈ 3 and 200 kJ/mol, respectively. The grain-growth behaviors of YAG were influenced by experimental conditions such as raw materials, initial particle size, initial particle distribution, etc
Dissipation-driven quantum phase transitions in collective spin systems
We consider two different collective spin systems subjected to strong
dissipation -- on the same scale as interaction strengths and external fields
-- and show that either continuous or discontinuous dissipative quantum phase
transitions can occur as the dissipation strength is varied. First, we consider
a well known model of cooperative resonance fluorescence that can exhibit a
second-order quantum phase transition, and analyze the entanglement properties
near the critical point. Next, we examine a dissipative version of the
Lipkin-Meshkov-Glick interacting collective spin model, where we find that
either first- or second-order quantum phase transitions can occur, depending
only on the ratio of the interaction and external field parameters. We give
detailed results and interpretation for the steady state entanglement in the
vicinity of the critical point, where it reaches a maximum. For the first-order
transition we find that the semiclassical steady states exhibit a region of
bistability.Comment: 12 pages, 16 figures, removed section on homodyne spectr
Evidence for nodeless superconducting gap in NaFeCoAs from low-temperature thermal conductivity measurements
The thermal conductivity of optimally doped NaFeCoAs
( 20 K) and overdoped NaFeCoAs ( 11 K)
single crystals were measured down to 50 mK. No residual linear term
is found in zero magnetic field for both compounds, which is an
evidence for nodeless superconducting gap. Applying field up to = 9 T
() does not noticeably increase in
NaFeCoAs, which is consistent with multiple isotropic gaps
with similar magnitudes. The of overdoped
NaFeCoAs shows a relatively faster field dependence,
indicating the increase of the ratio between the magnitudes of different gaps,
or the enhancement of gap anisotropy upon increasing doping.Comment: 5 pages, 4 figure
Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields
We have studied an anomalous microwave (mw) response of superconducting
YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak
dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s})
show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and
X_{s} were found to initially decrease with elevated H_{dc} and then increase
after H_{dc} reaches a crossover field, H_{c}, which is independent of the
amplitude and frequency of the input mw signal within the measurements. The
frequency dependence of R_{s} is almost linear at fixed H_{dc} with different
magnitudes (H_{c}). The impedance plane analysis
demonstrates that r_{H}, which is defined as the ratio of the change in
R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1
at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is
qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
- …