874 research outputs found
Marine Managed Areas Workshop report, Penang, Malaysia, 18-19 January, 2011
Establishment of a working group of regional experts in Marine Protected Areas (MPAs); inventory and status of existing MPAs; gap analysis;establishment of common data requirements and protocols;development of a regional action plan;training and capacity building; outreach activities; proposal f0r management of existing and creation of new MPAs
Unlocking innovation in the sport industry through additive manufacturing
Fast changing customer demands and rising requirements in product performance constantly challenge sports equipment manufacturers to come up with new and improved products to stay competitive. Additive Manufacturing (AM), also referred to as 3D Printing, can enhance the development of new products by providing an efficient approach of rapid prototyping. This research aims to analyse the current adoption of AM technologies in the innovation process of the sports industry i.e. level of awareness; how it is implemented; and it impact on the innovation process. Literature research shows that AM brings many possibilities to enhance the innovation process, and case studies indicated several obstacles that hinder the technology from fully unfolding. AM is still at the early stage of entering the sports equipment industry and its potential benefits have not been fully exploited yet. The findings generated from the research of real life practices show that AM provides several benefits when it comes to the innovation process, such as a faster development process, an optimised output, as well as the possibility to create new designs. However, companies are not yet able to enhance the innovation process in a way that leads to new products and new markets with AM. Limitations, including a small range of process able material and an inefficient mass production, still restrain the technology and lead to unused capability. Nevertheless, future prospects indicate the growing importance of AM in the innovation process and show that its advancement paves the way to new and innovative products
Selective deletion of PPARÎČ/ÎŽ in fibroblasts causes dermal fibrosis by attenuated LRG1 expression.
Connective tissue diseases of the skin are characterized by excessive collagen deposition in the skin and internal organs. Fibroblasts play a pivotal role in the clinical presentation of these conditions. Nuclear receptor peroxisome-proliferator activated receptors (PPARs) are therapeutic targets for dermal fibrosis, but the contribution of the different PPAR subtypes are poorly understood. Particularly, the role of fibroblast PPARÎČ/ÎŽ in dermal fibrosis has not been elucidated. Thus, we generated a mouse strain with selective deletion of PPARÎČ/ÎŽ in the fibroblast (FSPCre- <i>Pparb/d</i> <sup>-/-</sup> ) and interrogated its epidermal and dermal transcriptome profiles. We uncovered a downregulated gene, leucine-rich alpha-2-glycoprotein-1 ( <i>Lrg1</i> ), of previously unknown function in skin development and architecture. Our findings suggest that the regulation of <i>Lrg1</i> by PPARÎČ/ÎŽ in fibroblasts is an important signaling conduit integrating PPARÎČ/ÎŽ and TGFÎČ1-signaling networks in skin health and disease. Thus, the FSPCre- <i>Pparb/d</i> <sup>-/-</sup> mouse model could serve as a novel tool in the current gunnery of animal models to better understand dermal fibrosis
Phase diagram and neutron spin resonance of superconducting NaFe1âxCuxAs
We use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe1âxCuxAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near xâ2% with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near xâ50%. Using transport measurements, we demonstrate that the resistivity in NaFe1âxCuxAs exhibits non-Fermi-liquid behavior near xâ1.8%. Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis in NaFe0.98Cu0.02As. The resonance is high in energy relative to the superconducting transition temperature Tc but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe1âxCuxAs is continuously connected to an antiferromagnetically ordered insulating phase near xâ50% with significant electronic correlations. Therefore, electron correlations is an important ingredient of superconductivity in NaFe1âxCuxAs and other iron pnictides
Targeted CRISPR activation and knockout screenings identify novel doxorubicin transporters
PurposeTissue-specific drug uptake has not been well studied, compared to the deeper understanding of drug resistance mediated by the cellular efflux system such as MDR1 proteins. It has been suggested that many drugs need active or defined transporters to pass the cell membrane. In contrast to efflux components induced after anti-cancer drugs reach the intracellular compartment, drug importers are required for initial drug responses. Furthermore, tissue-specific uptake of anti-cancer drugs may directly impact the side effects of many drugs when they accumulate in healthy tissues. Therefore, linking anti-cancer drugs to their respective drug import transporters would directly help to predict drug responses, whilst minimizing side effects.MethodsTo identify drug transporters of the commonly used anti-cancer drug doxorubicin, we performed focused CRISPR activation and knockout genetic screens targeting all potential membrane-associated transporters and proteins. We monitored the direct uptake of doxorubicin by fluorescence-activated cell sorting (FACS) as the screening readout for identifying transporters/proteins directly involved in doxorubicin uptake.ResultsIntegrating the data from these comprehensive CRISPR screenings, we confirmed previously indicated doxorubicin exporters such as ABCB1 and ABCG2 genes, and identified novel doxorubicin importer gene SLC2A3 (GLUT3). Upregulation of SLC2A3 led to higher doxorubicin uptake and better cell killing, indicating SLC2A3 could be a new marker to predict doxorubicin drug response and minimize side effects for the personalized application of this conventional chemotherapeutic drug.ConclusionsOur study provides a comprehensive way for identifying drug transporters, as exemplified by the commonly used anti-cancer drug doxorubicin. The newly identified importers may have direct clinical implications for the personalized application of doxorubicin in treating distinct tumors. Our results also highlight the necessity of combining both CRISPR knockout and CRISPR activation genetic screens to identify drug transporters.Chemical Immunolog
Measurement of the 58Ni(α, γ) 62Zn reaction and its astrophysical impact
Funding Details: PHY 08-22648, NSF, National Science Foundation; PHY 0969058, NSF, National Science Foundation; PHY 1102511, NSF, National Science FoundationCross section measurements of the 58Ni(α,γ)62Zn reaction were performed in the energy range Eα=5.5to9.5 MeV at the Nuclear Science Laboratory of the University of Notre Dame, using the NSCL Summing NaI(Tl) detector and the γ-summing technique. The measurements are compared to predictions in the statistical Hauser-Feshbach model of nuclear reactions using the SMARAGD code. It is found that the energy dependence of the cross section is reproduced well but the absolute value is overestimated by the prediction. This can be remedied by rescaling the α width by a factor of 0.45. Stellar reactivities were calculated with the rescaled α width and their impact on nucleosynthesis in type Ia supernovae has been studied. It is found that the resulting abundances change by up to 5% when using the new reactivities. © 2014 American Physical Society.Peer reviewe
Using neighborhood rough set theory to address the smart elderly care in multi-level attributes
The neighborhood rough set theory was adopted for attributes reduction and the weight distribution of condition attributes based on the concept of importance level. Smart elderly care coverage rate is low in China. A decisive role in the adoption of smart elderly care is still a problem that needs to be addressed. This study contributes to the adoption of smart elderly care was selected as the decision attribute. The remaining attributes are used as conditional attributes and the multi-level symmetric attribute set for assessing acceptance of smart elderly care. Prior studies are not included smart elderly care adoption attributes in multi-levels; hence, this problem needs to be addressed. The results of this study indicate that the condition attribute of gender has the greatest influence on the decision attribute. The condition attribute of living expenses for smart elderly care has the second largest impact on decision attribute. Childrenâs support for the elderly decency of the novel elderly care system and the acceptance of non-traditional elderly care methods belong to the primary condition attribute of traditional concept. The result indicates traditional concepts have a certain impact on the adoption of smart elderly care and a condition attribute of residence also has a slight influence on the symmetric decision attribute. The sensitivity analysis shows the insights for uncertainties and provides as a basis for the analysis of the attributes in the smart elderly care service adoption
Atom gratings produced by large angle atom beam splitters
An asymptotic theory of atom scattering by large amplitude periodic
potentials is developed in the Raman-Nath approximation. The atom grating
profile arising after scattering is evaluated in the Fresnel zone for
triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It
is shown that, owing to the scattering in these potentials, two
\QTR{em}{groups} of momentum states are produced rather than two distinct
momentum components. The corresponding spatial density profile is calculated
and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure
Impact of contusion injury on intramuscular emm1 group a streptococcus infection and lymphatic spread.
Invasive group A Streptococcus (iGAS) is frequently associated with emm1 isolates, with an attendant mortality of around 20%. Cases occasionally arise in previously healthy individuals with a history of upper respiratory tract infection, soft tissue contusion, and no obvious portal of entry. Using a new murine model of contusion, we determined the impact of contusion on iGAS bacterial burden and phenotype.
Calibrated mild blunt contusion did not provide a focus for initiation or seeding of GAS that was detectable following systemic GAS bacteremia, but instead enhanced GAS migration to the local draining lymph node following GAS inoculation at the same time and site of contusion. Increased migration to lymph node was associated with emergence of mucoid bacteria, although was not specific to mucoid bacteria. In one study, mucoid colonies demonstrated a significant increase in capsular hyaluronan that was not linked to a covRS or rocA mutation, but to a deletion in the promoter of the capsule synthesis locus, hasABC, resulting in a strain with increased fitness for lymph node migration.
In summary, in the mild contusion model used, we could not detect seeding of muscle by GAS. Contusion promoted bacterial transit to the local lymph node. The consequences of contusion-associated bacterial lymphatic migration may vary depending on the pathogen and virulence traits selected
- âŠ