6,186 research outputs found

    LDPC Code Design for the BPSK-constrained Gaussian Wiretap Channel

    Full text link
    A coding scheme based on irregular low-density parity-check (LDPC) codes is proposed to send secret messages from a source over the Gaussian wiretap channel to a destination in the presence of a wiretapper, with the restriction that the source can send only binary phase-shift keyed (BPSK) symbols. The secrecy performance of the proposed coding scheme is measured by the secret message rate through the wiretap channel as well as the equivocation rate about the message at the wiretapper. A code search procedure is suggested to obtain irregular LDPC codes that achieve good secrecy performance in such context.Comment: submitted to IEEE GLOBECOM 2011 - Communication Theory Symposiu

    Detecting Byzantine Attacks Without Clean Reference

    Full text link
    We consider an amplify-and-forward relay network composed of a source, two relays, and a destination. In this network, the two relays are untrusted in the sense that they may perform Byzantine attacks by forwarding altered symbols to the destination. Note that every symbol received by the destination may be altered, and hence no clean reference observation is available to the destination. For this network, we identify a large family of Byzantine attacks that can be detected in the physical layer. We further investigate how the channel conditions impact the detection against this family of attacks. In particular, we prove that all Byzantine attacks in this family can be detected with asymptotically small miss detection and false alarm probabilities by using a sufficiently large number of channel observations \emph{if and only if} the network satisfies a non-manipulability condition. No pre-shared secret or secret transmission is needed for the detection of these attacks, demonstrating the value of this physical-layer security technique for counteracting Byzantine attacks.Comment: 16 pages, 7 figures, accepted to appear on IEEE Transactions on Information Forensics and Security, July 201
    • …
    corecore