27,904 research outputs found

    Scalable squeezed light source for continuous variable quantum sampling

    Full text link
    We propose a novel squeezed light source capable of meeting the stringent requirements of continuous variable quantum sampling. Using the effective χ2\chi_2 interaction induced by a strong driving beam in the presence of the χ3\chi_3 response in an integrated microresonator, our device is compatible with established nanophotonic fabrication platforms. With typical realistic parameters, squeezed states with a mean photon number of 10 or higher can be generated in a single consistent temporal mode at repetition rates in excess of 100MHz. Over 15dB of squeezing is achievable in existing ultra-low loss platforms

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Proliferating tricholemmal tumour: clinicopathological aspects of a case.

    Get PDF
    We report the case of a 49-year-old man who presented with an enlarging mass over his occipital scalp. The clinical impression was either a squamous cell carcinoma or an unusual adnexal tumour. A wide excision was performed with skin grafting. Gross examination revealed a large exophytic tumour mass measuring 10 cm. Histopathological examination showed a circumscribed, well-differentiated squamoproliferative lesion with a lobulated architecture. Clear cell features, pilar-type keratinisation, microcalcifications and the presence of mucinous degeneration were noted. A diagnosis of proliferating tricholemmal tumour was made. This entity incorporates a spectrum of lesions, ranging from the mostly benign proliferating tricholemmal cyst to tumours having more atypical cellular and invasive features, the latter features correlating with an increased capacity for aggressive behaviour. Management-wise, such tumours require complete excision with follow-up. As the tumours are often large in size at presentation, reconstruction is required

    Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Get PDF
    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols

    Nanoscale broadband transmission lines for spin qubit control

    Full text link
    The intense interest in spin-based quantum information processing has caused an increasing overlap between two traditionally distinct disciplines, such as magnetic resonance and nanotechnology. In this work we discuss rigourous design guidelines to integrate microwave circuits with charge-sensitive nanostructures, and describe how to simulate such structures accurately and efficiently. We present a new design for an on-chip, broadband, nanoscale microwave line that optimizes the magnetic field driving a spin qubit, while minimizing the disturbance on a nearby charge sensor. This new structure was successfully employed in a single-spin qubit experiment, and shows that the simulations accurately predict the magnetic field values even at frequencies as high as 30 GHz.Comment: 18 pages, 8 figures, 1 table, pdflate

    Adaptive and coupled continuum-molecular mechanics simulations of amorphous materials

    Get PDF
    A method to reduce the degrees freedom in molecular mechanics simulation is presented. Although the approach is formulated for amorphous materials in mind, it is equally applicable to crystalline materials. The method can be selectively applied to regions where molecular displacements are expected to be small while simultaneously using classical molecular mechanics (MM) for regions undergoing large deformation. The accuracy and computational efficiency of the approach is demonstrated through the simulation of a polymer-like substrate being indented by a rigid hemispherical indentor. The region directly below the indentor is modelled by classical molecular mechanics while the region further away has the degrees of freedom (DOFs) reduced by about 50 times. The results of automatically reverting regions of reduced DOFs back to classical MM also demonstrate the capability of performing adaptive simulations

    Electrostatic Tuning of the Superconductor-Insulator Transition in Two Dimensions

    Full text link
    Superconductivity has been induced in insulating ultra-thin films of amorphous bismuth using the electric field effect. The screening of electron-electron interaction was found to increase with electron concentration in a manner correlated with the tendency towards superconductivity. This does not preclude an increase in the density of states being important in the development of superconductivity. The superconductor-insulator transition appears to belong to the universality class of the three dimensional XY model.Comment: Four pages, three figures. Revised slightly to reflect referees' comment
    • …
    corecore