75 research outputs found

    Entity Linking for Queries by Searching Wikipedia Sentences

    Full text link
    We present a simple yet effective approach for linking entities in queries. The key idea is to search sentences similar to a query from Wikipedia articles and directly use the human-annotated entities in the similar sentences as candidate entities for the query. Then, we employ a rich set of features, such as link-probability, context-matching, word embeddings, and relatedness among candidate entities as well as their related entities, to rank the candidates under a regression based framework. The advantages of our approach lie in two aspects, which contribute to the ranking process and final linking result. First, it can greatly reduce the number of candidate entities by filtering out irrelevant entities with the words in the query. Second, we can obtain the query sensitive prior probability in addition to the static link-probability derived from all Wikipedia articles. We conduct experiments on two benchmark datasets on entity linking for queries, namely the ERD14 dataset and the GERDAQ dataset. Experimental results show that our method outperforms state-of-the-art systems and yields 75.0% in F1 on the ERD14 dataset and 56.9% on the GERDAQ dataset

    How well do Large Language Models perform in Arithmetic tasks?

    Full text link
    Large language models have emerged abilities including chain-of-thought to answer math word problems step by step. Solving math word problems not only requires abilities to disassemble problems via chain-of-thought but also needs to calculate arithmetic expressions correctly for each step. To the best of our knowledge, there is no work to focus on evaluating the arithmetic ability of large language models. In this work, we propose an arithmetic dataset MATH 401 to test the latest large language models including GPT-4, ChatGPT, InstrctGPT, Galactica, and LLaMA with various arithmetic expressions and provide a detailed analysis of the ability of large language models. MATH 401 and evaluation codes are released at \url{https://github.com/GanjinZero/math401-llm}

    Boosting In-Context Learning with Factual Knowledge

    Full text link
    In-Context Learning (ICL) over Large language models (LLMs) aims at solving previously unseen tasks by conditioning on a few training examples, eliminating the need for parameter updates and achieving competitive performance. In this paper, we demonstrate that factual knowledge is imperative for the performance of ICL in three core facets, i.e., the inherent knowledge learned in LLMs, the factual knowledge derived from the selected in-context examples, and the knowledge biases in LLMs for output generation. To unleash the power of LLMs in few-shot learning scenarios, we introduce a novel Knowledgeable In-Context Tuning (KICT) framework to further improve the performance of ICL: 1) injecting factual knowledge to LLMs during continual self-supervised pre-training, 2) judiciously selecting the examples with high knowledge relevance, and 3) calibrating the prediction results based on prior knowledge. We evaluate the proposed approaches on auto-regressive LLMs (e.g., GPT-style models) over multiple text classification and question answering tasks. Experimental results demonstrate that KICT substantially outperforms strong baselines, and improves by more than 13% and 7% of accuracy on text classification and question answering tasks, respectively

    Sharing, Teaching and Aligning: Knowledgeable Transfer Learning for Cross-Lingual Machine Reading Comprehension

    Full text link
    In cross-lingual language understanding, machine translation is often utilized to enhance the transferability of models across languages, either by translating the training data from the source language to the target, or from the target to the source to aid inference. However, in cross-lingual machine reading comprehension (MRC), it is difficult to perform a deep level of assistance to enhance cross-lingual transfer because of the variation of answer span positions in different languages. In this paper, we propose X-STA, a new approach for cross-lingual MRC. Specifically, we leverage an attentive teacher to subtly transfer the answer spans of the source language to the answer output space of the target. A Gradient-Disentangled Knowledge Sharing technique is proposed as an improved cross-attention block. In addition, we force the model to learn semantic alignments from multiple granularities and calibrate the model outputs with teacher guidance to enhance cross-lingual transferability. Experiments on three multi-lingual MRC datasets show the effectiveness of our method, outperforming state-of-the-art approaches.Comment: emnlp 202
    • …
    corecore