45,624 research outputs found

    Coronae & Outflows from Helical Dynamos, Compatibility with the MRI, and Application to Protostellar Disks

    Full text link
    Magnetically mediated disk outflows are a leading paradigm to explain winds and jets in a variety of astrophysical sources, but where do the fields come from? Since accretion of mean magnetic flux may be disfavored in a thin turbulent disk, and only fields generated with sufficiently large scale can escape before being shredded by turbulence, in situ field production is desirable. Nonlinear helical inverse dynamo theory can provide the desired fields for coronae and outflows. We discuss the implications for contemporary protostellar disks, where the MRI (magneto-rotational instability) can drive turbulence in the inner regions, and primordial protostellar disks, where gravitational instability drives the turbulence. We emphasize that helical dynamos are compatible with the magneto-rotational instability, and clarify the relationship between the two.Comment: 12 pages, LaTeX (with figs); version in press for "Proceedings of the International Workshop on Magnetic Fields and Star Formation: Theory vs. Observation" Madrid, Spain; April 200

    Star-forming accretion flows and the low luminosity nuclei of giant elliptical galaxies

    Full text link
    The luminosities of the centers of nearby elliptical galaxies are very low compared to models of thin disc accretion to their black holes at the Bondi rate, typically a few hundredths to a few tenths of a solar mass per year. This has motivated models of inefficiently-radiated accretion that invoke weak electron-ion thermal coupling, and/or inhibited accretion rates due to convection or outflows. Here we point out that even if such processes are operating, a significant fraction of the accreting gas is prevented from reaching the central black hole because it condenses into stars in a gravitationally unstable disc. Star formation occurs inside the Bondi radius (typically ~100pc in giant ellipticals), but still relatively far from the black hole in terms of Schwarzschild radii. Star formation depletes and heats the gas disc, eventually leading to a marginally stable, but much reduced, accretion flow to the black hole. We predict the presence of cold (~100K), dusty gas discs, containing clustered H-alpha emission and occasional type II supernovae, both resulting from the presence of massive stars. Star formation accounts for several features of the M87 system: a thin disc, traced by H-alpha emission, is observed on scales of about 100pc, with features reminiscent of spiral arms and dust lanes; the star formation rate inferred from the intensity of H-alpha emission is consistent with the Bondi accretion rate of the system. Star formation may therefore help suppress accretion onto the central engines of massive ellipticals. We also discuss some implications for the fueling of the Galactic center and quasars.Comment: 13 pages, accepted to MNRA

    Shubnikov-de Haas oscillations of a single layer graphene under dc current bias

    Full text link
    Shubnikov-de Haas (SdH) oscillations under a dc current bias are experimentally studied on a Hall bar sample of single layer graphene. In dc resistance, the bias current shows the common damping effect on the SdH oscillations and the effect can be well accounted for by an elevated electron temperature that is found to be linearly dependent on the current bias. In differential resistance, a novel phase inversion of the SdH oscillations has been observed with increasing dc bias, namely we observe the oscillation maxima develop into minima and vice versa. Moreover, it is found that the onset biasing current, at which a SdH extremum is about to invert, is linearly dependent on the magnetic field of the SdH extrema. These observations are quantitatively explained with the help of a general SdH formula.Comment: 5 pages, 4 figures, A few references adde

    Tunneling spectroscopy studies of aluminum oxide tunnel barrier layers

    Full text link
    We report scanning tunneling microscopy and ballistic electron emission microscopy studies of the electronic states of the uncovered and chemisorbed-oxygen covered surface of AlOx tunnel barrier layers. These states change when chemisorbed oxygen ions are moved into the oxide by either flood gun electron bombardment or by thermal annealing. The former, if sufficiently energetic, results in locally well defined conduction band onsets at ~1 V, while the latter results in a progressively higher local conduction band onset, exceeding 2.3 V for 500 and 600 C thermal anneals

    The stellar content of the infalling molecular clump G286.21+0.17

    Full text link
    The early evolution during massive star cluster formation is still uncertain. Observing embedded clusters at their earliest stages of formation can provide insight into the spatial and temporal distribution of the stars and thus probe different star cluster formation models. We present near-infrared imaging of an 8'*13'(5.4pc*8.7pc) region around the massive infalling clump G286.21+0.17(also known as BYF73). The stellar content across the field is determined and photometry is derived in order to { obtain} stellar parameters for the cluster members. We find evidence for some sub-structure (on scales less than a pc diameter) within the region with apparently at least three different sub-clusters associated with the molecular clump based on differences in extinction and disk fractions. At the center of the clump we identify a deeply embedded sub-cluster. Near-infrared excess is detected for 39-44% in the two sub-clusters associated with molecular material and 27% for the exposed cluster. Using the disk excess as a proxy for age this suggests the clusters are very young. The current total stellar mass is estimated to be at least 200 Msun. The molecular core hosts a rich population of pre-main sequence stars. There is evidence for multiple events of star formation both in terms of the spatial distribution within the star forming region and possibly from the disk frequency.Comment: Submitted to A
    corecore