830 research outputs found

    In vitro Ruminal Gas Production Kinetics of Four Fodder Trees Ensiled With or Without Molasses and Urea

    Get PDF
    his study investigated if the addition of urea (U), molasses (M) or their 1:1 (v/v) mixture during ensiling increases the nutritional value of forage from four fodder trees (Prunus persica, Leucaena esculenta, Acacia farnesiana, and Prunus domestica). Forage samples of fodder trees were collected in triplicate (three individual samples of each species) and subjected to an in vitro gas production (GP) procedure. Fermentation at 24 h (GP24), short-chain volatile fatty acids (SCFA), and microbial crude protein production (MCP), in vitro organic matter digestibility (OMD), metabolizable energy (ME) and dry matter degradability (DMD) were estimated. Forage samples were incubated for 72 h in an incubator at 39ºC and the volume of GP was recorded at 2, 4, 6, 8, 10, 12, 24, 48, and 72 h of incubation using the reading pressure technique. The rumen fermentation profiles were highest for P. persica, which showed the highest (P<0.0001) DMD, ME, OMD, SCFA, GP24 and MCP. On the other hand L. esculenta had the lowest (P<0.0001) DMD, SCFA, MCP; P. domestica had the lowest (P<0.0001) OMD. The addition of M to silage increased (P<0.0001) ME and OMD, as well as GP. However, the addition of U and the mixture of U and M reduced (P<0.0001) DMD, ME, OMD, SCFA, GY24 and MCP. These results show that P. persica has the highest nutritive value and L. esculenta the lowest for ruminants. Additionally, the addition of M to forage from fodder trees increases rumen GP and fermentation, which may improve nutrient utilization in ruminants

    Experimental demonstration of picometer level signal extraction with time-delay interferometry technique

    Full text link
    In this work, we have built an experimental setup to simulate the clock noise transmission with two spacecrafts and two optical links, and further demonstrated the extraction of picometer level signal drowned by the large laser frequency noise and clock noise with the data post-processing method. Laser frequency noise is almost eliminated by using the idea of time-delay interferometry (TDI) to construct an equal arm interferometer. Clock asynchronism and clock jitter noise are significantly suppressed by laser sideband transmitting the clock noise using an electro-optic modulator (EOM). Experimental results show a reduction in laser frequency noise by approximately 10^5 and clock noise by 10^2, recovering a weak displacement signal with an average amplitude about 60 picometer and period 1 second. This work has achieved the principle verification of the noise reduction function of TDI technique to some extent, serving the data processing research of space-borne gravitational wave detection

    AN EVALUATION OF THE POOLED LOLLI-METHOD RT-qPCR TESTING FOR COVID-19 SURVEILLANCE IN SINGAPORE

    Get PDF
    Background: Following the success of the Lolli-Method or Lolli-Test as a surveillance method in Germany, the Ministry of Health, Singapore investigated the feasibility of deploying the method as a rostered routine testing in vulnerable individuals such as children, nursing homes and frontline workers; and evaluated the sensitivity and ideal pooling ratio of the Lolli-Method.&nbsp; Methods: The study was conducted in two phases – the first phase was to assess the operational feasibility of the Lolli-Method. It was held in conjunction with air sampling at a childcare centre with children ages 2 to 6 years old across 40 days. The second phase was to evaluate the sensitivity of the Lolli-Method with different pooling ratios and was conducted in collaboration with the National Centre for Infectious Diseases (NCID) where each pool was spiked with one Lolli swab from a COVID-positive patient. All patients enrolled in this study have their viral load cycle threshold (CT) levels assessed prior to admission via a mid-turbinate oropharyngeal (MTOP) polymerase chain reaction (PCR) swab.&nbsp; Results: The sensitivity of the pooled Lolli-Test was similar to antigen rapid tests with 100% sensitivity (3/3) in a pooling ratio of 20:1 for patients with viral loads of cycle threshold (CT) levels below 20. For individuals with lower viral loads, the sensitivity of the Lolli-Test was 66.7% (2/3) in a pooling ratio of 20:1 and 100% (2/2) in a smaller pooling ratio of 15:1. The operational feasibility of the Lolli-Test was assessed to be high amongst study participants although students were noted to require some additional assistance from teachers.&nbsp; Conclusion: The Lolli-Test is an effective surveillance method with adequate sensitivity to detect a COVID-19 infected individual in a pool of up to 20 albeit largely dependent on the viral load. Furthermore, the Lolli-Test also provides a less invasive alternative sample collection method for individuals who cannot tolerate or have contraindications for the regular nasal or oropharyngeal swabs such as young children. More studies should be done to assess the Lolli-Test’s true limit of detection and to evaluate the use of the Lolli-Method in infants and for other respiratory diseases such as influenza

    A Novel Cost Optimization Strategy for SDN-Enabled UAV-Assisted Vehicular Computation Offloading

    Get PDF
    Vehicular computation offloading is a well-received strategy to execute delay-sensitive and/or compute-intensive tasks of legacy vehicles. The response time of vehicular computation offloading can be shortened by using mobile edge computing that offers strong computing power, driving these computation tasks closer to end users. However, the quality of communication is hard to guarantee due to the obstruction of dense buildings or lack of infrastructure in some zones. Unmanned Aerial Vehicles (UAVs), therefore, have become one of the means to establish communication links for the two ends owing to its characteristics of ignoring terrain and flexible deployment. To make a sensible decision of computation offloading, nevertheless vehicles need to gather offloading-related global information, in which Software-Defined Networking (SDN) has shown its advances in data collection and centralized management. In this paper, thus, we propose an SDN-enabled UAV-assisted vehicular computation offloading optimization framework to minimize the system cost of vehicle computing tasks. In our framework, the UAV and the Mobile Edge Computing (MEC) server can work on behalf of the vehicle users to execute the delay-sensitive and compute-intensive tasks. The UAV, in a meanwhile, can also be deployed as a relay node to assist in forwarding computation tasks to the MEC server. We formulate the offloading decision-making problem as a multi-players computation offloading sequential game, and design the UAV-assisted Vehicular Computation Cost Optimization (UVCO) algorithm to solve this problem. Simulation results demonstrate that our proposed algorithm can make the offloading decision to minimize the Average System Cost (ASC)

    Focal Adjustment for Star Tracker

    Get PDF
    Technique of measuring intensity distribution and size of spot image developed has been discussed, which is especially suitable for defocus adjustment in ground test of star tracker. A novel approach for choosing a proper defocusing position has been proposed based on collimator, Gaussian surface fitting method, and other ordinary instruments. It proves to be practical and adequate in the development of distant object tracking such as star tracker.Defence Science Journal, 2010, 60(6), pp.678-682, DOI:http://dx.doi.org/10.14429/dsj.60.3

    Variance-constrained dissipative observer-based control for a class of nonlinear stochastic systems with degraded measurements

    Get PDF
    The official published version of the article can be obtained from the link below.This paper is concerned with the variance-constrained dissipative control problem for a class of stochastic nonlinear systems with multiple degraded measurements, where the degraded probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution over a given interval. The purpose of the problem is to design an observer-based controller such that, for all possible degraded measurements, the closed-loop system is exponentially mean-square stable and strictly dissipative, while the individual steady-state variance is not more than the pre-specified upper bound constraints. A general framework is established so that the required exponential mean-square stability, dissipativity as well as the variance constraints can be easily enforced. A sufficient condition is given for the solvability of the addressed multiobjective control problem, and the desired observer and controller gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programming method. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed algorithm.This work was supported in part by the Distinguished Visiting Fellowship of the Royal Academy of Engineering of the UK, the Royal Society of the UK, the GRF HKU 7137/09E, the National Natural Science Foundation of China under Grant 61028008, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    Sex differences in gene expression and proliferation are dependent on the epigenetic modifier HP1γ

    Get PDF
    Summary Sex differences in growth rate in very early embryos have been recognized in a variety of mammals and attributed to sex-chromosome complement effects as they occur before overt sexual differentiation. We previously found that sex-chromosome complement, rather than sex hormones regulates heterochromatin-mediated silencing of a transgene and autosomal gene expression in mice. Here, sex dimorphism in proliferation was investigated. We confirm that male embryonic fibroblasts proliferate faster than female fibroblasts and show that this proliferation advantage is completely dependent upon heterochromatin protein 1 gamma (HP1γ). To determine whether this sex-regulatory effect of HP1γ was a more general phenomenon, we performed RNA sequencing on MEFs derived from males and females, with or without HP1γ. Strikingly, HP1γ was found to be crucial for regulating nearly all sexually dimorphic autosomal gene expression because deletion of the HP1γ gene in males abolished sex differences in autosomal gene expression. The identification of a key epigenetic modifier as central in defining gene expression differences between males and females has important implications for understanding physiological sex differences and sex bias in disease

    Efficacy and Safety of Tribendimidine Against Clonorchis sinensis

    Get PDF
    In this randomized open-label trial, tribendimidine was shown to have an efficacy comparable to praziquantel for the treatment of Clonorchis sinensis infection. Patients treated with praziquantel experienced significantly more adverse events than tribendimidine recipient
    corecore