13 research outputs found

    Transcription factors and tumor glycometabolism

    No full text

    Emerging roles of lipid metabolism in cancer metastasis

    No full text
    Abstract Cancer cells frequently display fundamentally altered cellular metabolism, which provides the biochemical foundation and directly contributes to tumorigenicity and malignancy. Rewiring of metabolic programmes, such as aerobic glycolysis and increased glutamine metabolism, are crucial for cancer cells to shed from a primary tumor, overcome the nutrient and energy deficit, and eventually survive and form metastases. However, the role of lipid metabolism that confers the aggressive properties of malignant cancers remains obscure. The present review is focused on key enzymes in lipid metabolism associated with metastatic disease pathogenesis. We also address the function of an important membrane structure-lipid raft in mediating tumor aggressive progression. We enumerate and integrate these recent findings into our current understanding of lipid metabolic reprogramming in cancer metastasis accompanied by new and exciting therapeutic implications

    Mesophase Pitch-Based Carbon Fibers: Accelerated Stabilization of Pitch Fibers under Effective Plasma Irradiation-Assisted Modification

    No full text
    Stabilization is the most complicated and time-consuming step in the manufacture of carbon fibers (CFs), which is important to prepare CFs with high performance. Accelerated stabilization was successfully demonstrated under effective plasma irradiation-assisted modification (PIM) of mesophase pitch fibers (PFs). The results showed that the PIM treatment could obviously introduce more oxygen-containing groups into PFs, which was remarkably efficient in shortening the stabilization time of PFs with a faster stabilization heating rate, as well as in preparing the corresponding CFs with higher performance. The obtained graphitized fiber (GF-5) from the PF-5 under PIM treatment of 5 min presented a higher tensile strength of 2.21 GPa, a higher tensile modulus of 502 GPa, and a higher thermal conductivity of 920 W/m·K compared to other GFs. Therefore, the accelerated stabilization of PFs by PIM treatment is an efficient strategy for developing low-cost pitch-based CFs with high performance

    A new approach to fabricate superhydrophobic and antibacterial low density isotropic pyrocarbon by using catalyst free chemical vapor deposition

    No full text
    Low density isotropic pyrocarbon (LDIP) of a novel “litchi” hierarchical structure with a high degree of crystallinity and graphitization was prepared by a simple, catalyst-free chemical vapor deposition method. The fabricated LDIP coating surface exhibits highly durable and robust superhydrophobic, self-cleaning, water and corrosive liquids repelling and oil-water separating properties. Moreover, the antifouling/antibacterial properties and biocompatibility of LDIP were investigated. The LDIP coated surface can not only effective prevent protein and bacterial (Gram-negative E. coli) adhesion but also has good biocompatibility. This new type of carbon material has great promise for potential applications in waste water treatment and biomedical fields.Accepted versio

    Primary breast tumor induced extracellular matrix remodeling in premetastatic lungs

    No full text
    Abstract The premetastatic niche hypothesis proposes an active priming of the metastatic site by factors secreted from the primary tumor prior to the arrival of the first cancer cells. We investigated several extracellular matrix (ECM) structural proteins, ECM degrading enzymes, and ECM processing proteins involved in the ECM remodeling of the premetastatic niche. Our in vitro model consisted of lung fibroblasts, which were exposed to factors secreted by nonmalignant breast epithelial cells, nonmetastatic breast cancer cells, or metastatic breast cancer cells. We assessed ECM remodeling in vivo in premetastatic lungs of female mice growing orthotopic primary breast tumor xenografts, as compared to lungs of control mice without tumors. Premetastatic lungs contained significantly upregulated Collagen (Col) Col4A5, matrix metalloproteinases (MMPs) MMP9 and MMP14, and decreased levels of MMP13 and lysyl oxidase (LOX) as compared to control lungs. These in vivo findings were consistent with several of our in vitro cell culture findings, which showed elevated Col14A1, Col4A5, glypican-1 (GPC1) and decreased Col5A1 and Col15A1 for ECM structural proteins, increased MMP2, MMP3, and MMP14 for ECM degrading enzymes, and decreased LOX, LOXL2, and prolyl 4-hydroxylase alpha-1 (P4HA1) for ECM processing proteins in lung fibroblasts conditioned with metastatic breast cancer cell media as compared to control. Taken together, our data show that premetastatic priming of lungs by primary breast tumors resulted in significant ECM remodeling which could facilitate metastasis by increasing interstitial fibrillar collagens and ECM stiffness (Col14A1), disruptions of basement membranes (Col4A5), and formation of leaky blood vessels (MMP2, MMP3, MMP9, and MMP14) to promote metastasis

    Correction: Carnitine palmitoyl transferase 1 A is a novel diagnostic and predictive biomarker for breast cancer

    No full text
    An amendment to this paper has been published and can be accessed via the original article

    LncRNA BCAR4 promotes migration, invasion, and chemo-resistance by inhibiting miR-644a in breast cancer

    No full text
    Abstract Background Metastasis and drug resistance of breast cancer have become a barrier to treating patients successfully. Long noncoding RNAs (lncRNAs) are known as vital players in cancer development and progression.  Methods The RT-qPCR were used to detect the gene expression. Colony formation assay, would healing assay, and transwell assay were performed to investigate oncogenic functions of cells. CCK8 assay was used to detect the cell viability. Western blot was applied to detect the protein level. Dual-luciferase reporter assay was used to determine the relationship between molecules. Mouse orthotopic xenograft tumor models were established to evaluate the effects of BCAR4 on tumor growth and metastasis in vivo.  Results LncRNA BCAR4 was significantly increased in breast cancer patients’ tissues and plasma and upregulated in breast cancer cell lines. BCAR4 upregulation was correlated with the TNM stages and decreased after surgical removal of breast tumors. Silencing of BCAR4 suppressed breast cancer cell colony formation, migration, invasion, and xenograft tumor growth and promoted chemo-sensitivity. Mechanistically, BCAR4 facilitates breast cancer migration and invasion via the miR-644a-CCR7 axis of the MAPK pathway. BCAR4 promotes ABCB1 expression indirectly by binding to and down-regulating miR-644a to induce chemo-resistance in breast cancer. Conclusions Our findings provide insights into the oncogenic role of BCAR4 and implicate BCAR4 as a potential diagnostic biomarker and a promising therapeutic agent to suppress metastasis and inhibit chemo-resistance of breast cancer

    Key regulator PNPLA8 drives phospholipid reprogramming induced proliferation and migration in triple-negative breast cancer

    No full text
    Abstract Background Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and leads to the poorest patient outcomes despite surgery and chemotherapy treatment. Exploring new molecular mechanisms of TNBC that could lead to the development of novel molecular targets are critically important for improving therapeutic options for treating TNBC. Methods We sought to identify novel therapeutic targets in TNBC by combining genomic and functional studies with lipidomic analysis, which included mechanistic studies to elucidate the pathways that tie lipid profile to critical cancer cell properties. Our studies were performed in a large panel of human breast cancer cell lines and patient samples. Results Comprehensive lipid profiling revealed that phospholipid metabolism is reprogrammed in TNBC cells. We discovered that patatin-like phospholipase domain-containing lipase 8 (PNPLA8) is overexpressed in TNBC cell lines and tissues from breast cancer patients. Silencing of PNPLA8 disrupted phospholipid metabolic reprogramming in TNBC, particularly affecting the levels of phosphatidylglycerol (PG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and glycerophosphocholine (GPC). We showed that PNPLA8 is essential in regulating cell viability, migration and antioxidation in TNBC cells and promoted arachidonic acid and eicosanoid production, which in turn activated PI3K/Akt/Gsk3β and MAPK signaling. Conclusions Our study highlights PNPLA8 as key regulator of phospholipid metabolic reprogramming and malignant phenotypes in TNBC, which could be further developed as a novel molecular treatment target

    Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy

    No full text
    Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and MitoTracker Red probe. Results: FAO was active in radiation-resistant NPC cells, and the rate-limiting enzyme of FAO, carnitine palmitoyl transferase 1 A (CPT1A), was consistently up-regulated in these cells. The protein level of CPT1A was significantly associated with poor overall survival of NPC patients following radiotherapy. Inhibition of CPT1A re-sensitized NPC cells to radiation therapy by activating mitochondrial apoptosis both in vitro and in vivo. In addition, we identified Rab14 as a novel CPT1A binding protein. The CPT1A-Rab14 interaction facilitated fatty acid trafficking from lipid droplets to mitochondria, which decreased radiation-induced lipid accumulation and maximized ATP production. Knockdown of Rab14 attenuated CPT1A-mediated fatty acid trafficking and radiation resistance. Conclusion: An active FAO is a vital signature of NPC radiation resistance. Targeting CPT1A could be a beneficial regimen to improve the therapeutic effects of radiotherapy in NPC patients. Importantly, the CPT1A-Rab14 interaction plays roles in CPT1A-mediated radiation resistance by facilitating fatty acid trafficking. This interaction could be an attractive interface for the discovery of novel CPT1A inhibitors
    corecore