35,513 research outputs found
Print-Scan Resilient Text Image Watermarking Based on Stroke Direction Modulation for Chinese Document Authentication
Print-scan resilient watermarking has emerged as an attractive way for document security. This paper proposes an stroke direction modulation technique for watermarking in Chinese text images. The watermark produced by the idea offers robustness to print-photocopy-scan, yet provides relatively high embedding capacity without losing the transparency. During the embedding phase, the angle of rotatable strokes are quantized to embed the bits. This requires several stages of preprocessing, including stroke generation, junction searching, rotatable stroke decision and character partition. Moreover, shuffling is applied to equalize the uneven embedding capacity. For the data detection, denoising and deskewing mechanisms are used to compensate for the distortions induced by hardcopy. Experimental results show that our technique attains high detection accuracy against distortions resulting from print-scan operations, good quality photocopies and benign attacks in accord with the future goal of soft authentication
Effects of Geometric Phases in Josephson Junction Arrays
We show that the en route vortex velocity dependent part of the Magnus force
in a Josephson junction array is effectively zero, and predict zero Hall effect
in the classical limit. However, geometric phases due to the finite superfluid
density at superconductor grains have a profound influence on the quantum
dynamics of vortices. Subsequently we find rich and complex Hall behaviors
analogous to the Thouless-Kohmoto-Nightingale-den Nijs effect in the quantum
regime.Comment: Latex, 11 pages, appeared in Phys. Rev. Lett. v.77, 562 (1996) with
minor change
Work Function of Single-wall Silicon Carbide Nanotube
Using first-principles calculations, we study the work function of single
wall silicon carbide nanotube (SiCNT). The work function is found to be highly
dependent on the tube chirality and diameter. It increases with decreasing the
tube diameter. The work function of zigzag SiCNT is always larger than that of
armchair SiCNT. We reveal that the difference between the work function of
zigzag and armchair SiCNT comes from their different intrinsic electronic
structures, for which the singly degenerate energy band above the Fermi level
of zigzag SiCNT is specifically responsible. Our finding offers potential
usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure
Performance of Photosensors in the PandaX-I Experiment
We report the long term performance of the photosensors, 143 one-inch
R8520-406 and 37 three-inch R11410-MOD photomultipliers from Hamamatsu, in the
first phase of the PandaX dual-phase xenon dark matter experiment. This is the
first time that a significant number of R11410 photomultiplier tubes were
operated in liquid xenon for an extended period, providing important guidance
to the future large xenon-based dark matter experiments.Comment: v3 as accepted by JINST with modifications based on reviewers'
comment
Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation
In order to increase the accelerating gradient of Superconducting Radio
Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of
its high transition temperature and potential for low surface resistance in the
high RF field regime. However, due to the presence of the small superconducting
gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite
large compared to a single gap s-wave superconductor (SC) such as Nb.
Understanding the mechanisms of nonlinearity coming from the two-band structure
of MgB2, as well as extrinsic sources, is an urgent requirement. A localized
and strong RF magnetic field, created by a magnetic write head, is integrated
into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2
films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor
deposition technique on dielectric substrates, are measured at a fixed location
and show a strongly temperature-dependent third harmonic response. We propose
that at least two mechanisms are responsible for this nonlinear response, one
of which involves vortex nucleation and penetration into the film. [1] T. M.
Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field
Microwave Microscope for RF Defect Localization in Superconductors", IEEE
Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure
- …