28 research outputs found

    Total Glucosides of Paeony Alleviate Cell Apoptosis and Inflammation by Targeting the Long Noncoding RNA XIST/MicroRNA-124-3p/ITGB1 Axis in Renal Ischemia/Reperfusion Injury

    No full text
    Objective. Renal ischemia/reperfusion injury (RI/RI) is the main cause of acute kidney injury. Total glucosides of paeony (TGP) are a traditional Chinese medicine. This study was aimed at exploring the role of TGP in RI/RI and its underlying mechanism of action. Methods. Rat RI/RI models were constructed by surgical operation. Serum creatinine (Scr) and blood urea nitrogen (BUN) were used to evaluate renal function. The levels of proinflammatory cytokines were detected by ELISA. RI/RI was simulated by hypoxia/reoxygenation (H/R) treatment in renal cells in vitro. The lncRNA XIST (XIST) expression was analyzed by qRT-PCR. Then, the viability and apoptosis of renal cells were detected by MTT and flow cytometry assay. Additionally, dual-luciferase reporter assay was used to determine the interactions among XIST, microRNA-124-3p (miR-124-3p), and ITGB1. Results. TGP improved renal function and inhibited inflammatory responses after RI/RI. XIST expression was highly expressed in rat RI/RI models and H/R-treated renal cells, whereas treatment with TGP downregulated the XIST expression. Additionally, TGP increased viability and attenuated apoptosis and inflammation of H/R-treated renal cells via inhibiting XIST. Moreover, XIST was competitively bound to miR-124-3p, and ITGB1 was a target of miR-124-3p. miR-124-3p overexpression or ITGB1 inhibition rescued the reduction effect on viability and mitigated the promoting effects on cell apoptosis and inflammation caused by XIST overexpression in H/R-treated renal cells. Conclusions. In vivo, TGP attenuated renal dysfunction and inflammation in RI/RI rats. In vitro, TGP inhibited XIST expression to modulate the miR-124-3p/ITGB1 axis, alleviating the apoptosis and inflammation of H/R-treated renal cells

    Bladder-cancer-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating fatty acid transporter protein 2 and down-regulating receptor-interacting protein kinase 3 in PMN-MDSCs

    No full text
    Abstract Background Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. Methods BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. Results CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. Conclusions BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer

    Simultaneous expression of displayed and secreted antibodies for antibody screen.

    Get PDF
    The display of full-length antibody on the cell surface was achieved by fusing a transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the C-terminus of the heavy chain constant region. We also incorporated a furin cleavage site between the constant region and PDGFR transmembrane domain to obtain secreted antibodies. As a result, antibodies can be expressed simultaneously on the cell surface in a membrane-anchored version for screening and selecting through fluorescence-activated cell sorting (FACS) analysis, as well as in conditioned medium in a secreted version for function analysis

    Recombinant interferon-γ lentivirus co-infection inhibits adenovirus replication ex vivo.

    Get PDF
    Recombinant interferon-γ (IFNγ) production in cultured lentivirus (LV) was explored for inhibition of target virus in cells co-infected with adenovirus type 5 (Ad5). The ability of three different promoters of CMV, EF1α and Ubiquitin initiating the enhanced green fluorescence protein (GFP) activities within lentiviruses was systematically assessed in various cell lines, which showed that certain cell lines selected the most favorable promoter driving a high level of transgenic expression. Recombinant IFNγ lentivirus carrying CMV promoter (LV-CMV-IFNγ) was generated to co-infect 293A cells with a viral surrogate of recombinant GFP Ad5 in parallel with LV-CMV-GFP control. The best morphologic conditions were observed from the two lentiviruses co-infected cells, while single adenovirus infected cells underwent clear pathologic changes. Viral load of adenoviruses from LV-CMV-IFNγ or LV-CMV-GFP co-infected cell cultures was significantly lower than that from adenovirus alone infected cells (P=0.005-0.041), and the reduction of adenoviral load in the co-infected cells was 86% and 61%, respectively. Ad5 viral load from LV-CMV-IFNγ co-infected cells was significantly lower than that from LV-CMV-GFP co-infection (P=0.032), which suggested that IFNγ rather than GFP could further enhance the inhibition of Ad5 replication in the recombinant lentivirus co-infected cells. The results suggest that LV-CMV-IFNγ co-infection could significantly inhibit the target virus replication and might be a potential approach for alternative therapy of severe viral diseases

    Paleomagnetic Constraints on the Origin and Drift History of the North Qiangtang Terrane in the Late Paleozoic

    No full text
    To better constrain the origin and drift history of the North Qiangtang terrane (NQT), we report a well-dated paleomagnetic pole from the Late Permian volcanics of the NQT that appears to average out secular variation. Our new results yield a paleolatitude of -7.6 +/- 5.6 degrees N at -259 Ma for our sampling area, which confirms the NQT drifted northward during the Permian and Triassic periods. The equatorial paleolatitude of the NQT is similar to that of the coeval South China block, demonstrating that they were in close proximity. Combined with palaeontological and magmatic evidence, paleomagnetic constraints on the drift of the NQT in the Permian indicate that the NQT moved northward together with the South China block at this time. The paleolatitude evolution of the NQT implies that the NQT rifted from the northern margin of the Gondwana in the Devonian, which is earlier than the departure time of the South Qiangtang terrane. Plain Language Summary The Tibetan Plateau is composed of several different blocks that accreted to the southern margin of Asia. There are still several unanswered questions, such as the following: Where did these blocks originate? How did these blocks accrete to Asia? How did the oceanic basin evolve? In this work, we provide robust evidence to show that the Northern Qiangtang was located at equatorial latitude (-7.6 +/- 5.6 degrees N) during the Late Permian (similar to 259 Ma). The northward drift history together with features of the Northern Qiangtang and South China block indicates that they moved northward together during the Permian and that the Northern Qiangtang rifted from the northern margin of the Greater India margin of Gondwana during the Devonian
    corecore