15 research outputs found

    Computational Study of Hydrogel Ring Device for Ocular Drug Delivery

    Full text link
    Researchers have developed many different kinds of ocular drug delivery devices. However, most address anterior eye disorders—very few are designed specifically for the treatment of posterior eye diseases. A recently-developed hydrogel ring device is capable of delivering therapeutic quantities of the drug Ofloxacin to treat ocular infections at the back of the eye—a region typically difficult to access via systemic (e.g. ingestion of pills) and topical (e.g. eye drops) methods. Despite promising preliminary in vivo test results, much remains unknown about the precise drug transport pathway from the hydrogel ring to the posterior segment of the eye, as well as how design parameters may be altered to increase drug delivery efficiency. The aim of this work is to fully characterize the drug release and transport characteristics from the hydrogel, to ocular tissues (anterior and posterior), as well as provide a quantitative method for the optimization of various hydrogel ring design parameters. To achieve the abovementioned goals, we built a computational model using COMSOL Multiphysics to simulate the release of Ofloxacin from the hydrogel ring and to obtain the resulting drug distribution in ocular tissues at various time points. Using the model, we monitored the transient Ofloxacin concentration profile over the entire eye, for a treatment period of ten hours. Our results showed that while Ofloxacin diffuses to the anterior region much more quickly than to posterior tissues, Ofloxacin concentrations do successfully accumulate to therapeutic levels in the posterior tissues during the simulated ten-hour treatment period. This finding supports the therapeutic potential of the hydrogel ring for the treatment of posterior eye diseases. We also performed optimization analyses to determine the ideal set of hydrogel ring design parameters for the treatment of infections caused by three bacterial species commonly associated with ocular disorders: Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae. Preliminary findings suggest that the combination of an initial mass of 3 mg/m3 of Ofloxacin in the hydrogel and an Ofloxacin diffusivity of 3.11X10−9 m2/s in the hydrogel provide the best possible therapeutic outcome (from the range of values tested) for the treatment of E. coli and S. aureus infections. To our best knowledge, there is no existing computational model that simulates drug transport through the entire human eye from an ocular drug delivery device. We believe that our computational model will be highly useful for quantitative device characterization of the hydrogel ring, as well as in the optimization of the hydrogel ring design for the treatment of posterior eye disorders. This work may also serve as a model and reference for future computational work on ocular pharmacokinetics and/or ocular drug delivery devices

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Comparison of Patient Health Questionnaire-9, Edinburgh Postnatal Depression Scale and Hospital Anxiety and Depression - Depression subscale scores by administration mode: An individual participant data differential item functioning meta-analysis

    No full text
    Administration mode of patient-reported outcome measures (PROMs) may influence responses. We assessed if Patient Health Questionnaire-9 (PHQ-9), Edinburgh Postnatal Depression Scale (EPDS) and Hospital Anxiety and Depression Scale – Depression subscale (HADS-D) item responses and scores were associated with administration mode. We compared (1) self-administration versus interview-administration; within self-administration (2) research or medical setting versus private; and (3) pen-and-paper versus electronic; and within interview-administration (4) in-person versus phone. We analysed individual participant data meta-analysis datasets with item-level data for the PHQ-9 (N = 34,529), EPDS (N = 16,813), and HADS-D (N = 16,768). We used multiple indicator multiple cause models to assess differential item functioning (DIF) by administration mode. We found statistically significant DIF for most items on all measures due to large samples, but influence on total scores was negligible. In 10 comparisons conducted across the PHQ-9, EPDS, and HADS-D, Pearson's correlations and intraclass correlation coefficients between latent depression symptom scores from models that did or did not account for DIF were between 0.995 and 1.000. Total PHQ-9, EPDS, and HADS-D scores did not differ materially across administration modes. Researcher and clinicians who evaluate depression symptoms with these questionnaires can select administration methods based on patient preferences, feasibility, or cost.</p

    Contributors

    No full text

    World Congress Integrative Medicine & Health 2017: part two

    No full text

    World Congress Integrative Medicine & Health 2017: part two

    No full text
    corecore