19,069 research outputs found

    EPR spectrum via entangled states for an Exchange-Coupled Dimer of Single-Molecule Magnets

    Full text link
    Multi-high-frequency electron paramagnetic resonance(EPR) spectrum for a supermolecular dimer [Mn4]2[ Mn_4]_2 of single-molecule magnets recently reported [S. Hill, R. S. Edwards, N. Aliaga-Alcalde and G. Christou(HEAC), Science 302, 1015 (2003)] is studied in terms of the perturbation method in which the high-order corrections to the level splittings of degenerate states are included. It is shown that the corresponding eigenvectors are composed of entangled states of two molecules. The EPR-peak positions are calculated in terms of the eigenstates at various frequencies. From the best fit of theoretical level splittings with the measured values we obtain the anisotropy constant and exchange coupling which are in agreement with the corresponding values of experimental observation. Our study confirms the prediction of HEAC that the two Mn4Mn_4 units within the dimer are coupled quantum mechanically by the antiferromagnetic exchange interaction and the supermolecular dimer behaviors in analogy with artificially fabricated quantum dots.Comment: 16 pages,2 figures, 2 table

    Work Function of Single-wall Silicon Carbide Nanotube

    Full text link
    Using first-principles calculations, we study the work function of single wall silicon carbide nanotube (SiCNT). The work function is found to be highly dependent on the tube chirality and diameter. It increases with decreasing the tube diameter. The work function of zigzag SiCNT is always larger than that of armchair SiCNT. We reveal that the difference between the work function of zigzag and armchair SiCNT comes from their different intrinsic electronic structures, for which the singly degenerate energy band above the Fermi level of zigzag SiCNT is specifically responsible. Our finding offers potential usages of SiCNT in field-emission devices.Comment: 3 pages, 3 figure

    Shear and Layer Breathing Modes in Multilayer MoS2

    Full text link
    We study by Raman scattering the shear and layer breathing modes in multilayer MoS2. These are identified by polarization measurements and symmetry analysis. Their positions change with the number of layers, with different scaling for odd and even layers. A chain model explains the results, with general applicability to any layered material, and allows one to monitor their thickness

    Optical properties of MgCNi3MgCNi_3 in the normal state

    Full text link
    We present the optical reflectance and conductivity spectra for non-oxide antiperovskite superconductor MgCNi3MgCNi_{3} at different temperatures. The reflectance drops gradually over a large energy scale up to 33,000 cm1^{-1}, with the presence of several wiggles. The reflectance has slight temperature dependence at low frequency but becomes temperature independent at high frequency. The optical conductivity shows a Drude response at low frequencies and four broad absorption features in the frequency range from 600 cm1cm^{-1} to 33,000 cm1cm^{-1}. We illustrate that those features can be well understood from the intra- and interband transitions between different components of Ni 3d bands which are hybridized with C 2p bands. There is a good agreement between our experimental data and the first-principle band structure calculations.Comment: 4 pages, to be published in Phys. Rev.

    Evolution of InAs branches in InAs/GaAs nanowire heterostructures

    Get PDF
    Branched nanowireheterostructures of InAs∕GaAs were observed during Au-assisted growth of InAs on GaAsnanowires. The evolution of these branches has been determined through detailed electron microscopy characterization with the following sequence: (1) in the initial stage of InAsgrowth, the Au droplet is observed to slide down the side of the GaAsnanowire, (2) the downward movement of Aunanoparticle later terminates when the nanoparticle encounters InAsgrowing radially on the GaAsnanowire sidewalls, and (3) with further supply of In and As vapor reactants, the Aunanoparticles assist the formation of InAs branches with a well-defined orientation relationship with GaAs∕InAs core/shell stems. We anticipate that these observations advance the understanding of the kink formation in axial nanowireheterostructures.The Australian Research Council is acknowledged for the financial support of this project. One of the authors M.P. acknowledges the support of an International Postgraduate Research Scholarship

    MPC and PSO based control methodology for path tracking of 4WS4WD vehicles

    Full text link
    © 2018 by the authors. Four wheel steering and four wheel drive (4WS4WD) vehicles are over-actuated systems with superior performance. Considering the control problem caused by the system nonlinearity and over-actuated characteristics of the 4WS4WD vehicle, this paper presents two methods to enable a 4WS4WD vehicle to accurately follow a predefined path as well as its reference trajectories including velocity and acceleration profiles. The methodologies are based on model predictive control (MPC) and particle swarm optimization (PSO), respectively. The MPC method generates the virtual inputs in the upper controller and then allocates the actual inputs in the lower controller using sequential quadratic programming (SQP), whereas the PSO method is proposed as a fully optimization based method for comparison. Both methods achieve optimization of the steering angles and wheel forces for each of four independent wheels simultaneously in real time. Simulation results achieved by two different controllers in following the reference path with varying disturbances are presented. Discussion about two methodologies is provided based on their theoretical analysis and simulation results
    corecore