38,382 research outputs found
Implementation of Design Changes Towards a More Reliable, Hands-off Magnetron Ion Source
As the main ion source for the accelerator complex, magnetron ion
sources have been used at Fermilab since the 1970s. At the offline test stand,
new R&D is carried out to develop and upgrade the present magnetron-type
sources of ions of up to 80 mA and 35 keV beam energy in the context of
the Proton Improvement Plan. The aim of this plan is to provide high-power
proton beams for the experiments at FNAL. In order to reduce the amount of
tuning and monitoring of these ion sources, a new electronic system consisting
of a current-regulated arc discharge modulator allow the ion source to run at a
constant arc current for improved beam output and operation. A solenoid-type
gas valve feeds gas into the source precisely and independently of
ambient temperature. This summary will cover several studies and design changes
that have been tested and will eventually be implemented on the operational
magnetron sources at Fermilab. Innovative results for this type of ion source
include cathode geometries, solenoid gas valves, current controlled arc pulser,
cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor
reduction, with the aim to improve source lifetime, stability, and reducing the
amount of tuning needed. In this summary, I will highlight the advances made in
ion sources at Fermilab and will outline the directions of the continuing R&D
effort.Comment: 4 pp. arXiv admin note: substantial text overlap with
arXiv:1701.0175
Improvements on the Stability and Operation of a Magnetron H- Ion Source
The magnetron H- ion sources developed in the 1970s currently in operation at
Fermilab provide beam to the rest of the accelerator complex. A series of
modifications to these sources have been tested in a dedicated offline test
stand with the aim of improving different operational issues. The solenoid type
gas valve was tested as an alternative to the piezoelectric gas valve in order
to avoid its temperature dependence. A new cesium oven was designed and tested
in order to avoid glass pieces that were present with the previous oven,
improve thermal insulation and fine tune its temperature. A current-regulated
arc modulator was developed to run the ion source at a constant arc current,
providing very stable beam outputs during operations. In order to reduce beam
noise, the addition of small amounts of N2 gas was explored, as well as testing
different cathode shapes with increasing plasma volume. This paper summarizes
the studies and modifications done in the source over the last three years with
the aim of improving its stability, reliability and overall performance.Comment: 8 pages, 19 figure
Anomalous microwave response of high-temperature superconducting thin-film microstrip resonator in weak dc magnetic fields
We have studied an anomalous microwave (mw) response of superconducting
YBa_{2}Cu_{3}O_{7-delta} (YBCO) microstrip resonators in the presence of a weak
dc magnetic field, H_{dc}. The surface resistance (R_{s}) and reactance (X_{s})
show a correlated non-monotonic behaviour as a function of H_{dc}. R_{s} and
X_{s} were found to initially decrease with elevated H_{dc} and then increase
after H_{dc} reaches a crossover field, H_{c}, which is independent of the
amplitude and frequency of the input mw signal within the measurements. The
frequency dependence of R_{s} is almost linear at fixed H_{dc} with different
magnitudes (H_{c}). The impedance plane analysis
demonstrates that r_{H}, which is defined as the ratio of the change in
R_{s}(H_{dc}) and that in X_{s}(H_{dc}), is about 0.6 at H_{dc}<H_{c} and 0.1
at H_{dc}>H_{c}. The H_{dc} dependence of the surface impedance is
qualitatively independent of the orientation of H_{dc}.Comment: REVTex 3.1, 5 pages, 6 EPS figures, submitted to Physica
Recommended from our members
Zika virus promotes CCN1 expression via the CaMKIIα-CREB pathway in astrocytes.
Zika virus (ZIKV) infection in the human central nervous system (CNS) causes Guillain-Barre syndrome, cerebellum deformity, and other diseases. Astrocytes are immune response cells in the CNS and an important component of the blood-brain barrier. Consequently, any damage to astrocytes facilitates the spread of ZIKV in the CNS. Connective tissue growth factor/Nephroblastoma overexpressed gene family 1 (CCN1), an important inflammatory factor secreted by astrocytes, is reported to regulate innate immunity and viral infection. However, the mechanism by which astrocyte viral infection affects CCN1 expression remains undefined. In this study, we demonstrate that ZIKV infection up-regulates CCN1 expression in astrocytes, thus promoting intracellular viral replication. Other studies revealed that the cAMP response element (CRE) in the CCN1 promoter is activated by the ZIKV NS3 protein. The cAMP-responsive element-binding protein (CREB), a transacting factor of the CRE, is also activated by NS3 or ZIKV. Furthermore,a specific inhibitor of CREB, i.e. SGC-CBP30, reduced ZIKV-induced CCN1 up-regulation and ZIKV replication. Moreover, co-immunoprecipitation, overexpression, and knockdown studies confirmed that the interaction between NS3 and the regulatory domain of CaMKIIα could activate the CREB pathway, thus resulting in the up-regulation of CCN1 expression and enhancement of virus replication. In conclusion, the findings of our investigations on the NS3-CaMKIIα-CREB-CCN1 pathway provide a foundation for understanding the infection mechanism of ZIKV in the CNS
- …