6 research outputs found

    Noninvasive real-time characterization of non-melanoma skin cancers with handheld optoacoustic probes.

    No full text
    Currently, imaging technologies that enable dermsurgeons to visualize non-melanoma skin cancers (NMSC) in vivo preoperatively are lacking, resulting in excessive or incomplete removal. Multispectral optoacoustic tomography (MSOT) is a volumetric imaging tool to differentiate tissue chromophores and exogenous contrast agents, based on differences in their spectral signatures and used for high-resolution imaging of functional and molecular contrast at centimeter scale depth. We performed MSOT imaging with two- and three-dimensional handheld scanners on 21 Asian patients with NMSC. The tumors and their oxygenation parameters could be distinguished from normal skin endogenously. The lesion dimensions and depths were extracted from the spectral melanin component with three-dimensional spatial resolution up to 80 μm. The intraclass correlation coefficient correlating tumor dimension measurements between MSOT and ex vivo histology of excised tumors, showed good correlation. Real-time 3D imaging was found to provide information on lesion morphology and its underlying neovasculature, indicators of the tumor's aggressiveness

    The role of Fibroblast growth factor binding protein 1 in skin carcinogenesis and inflammation.

    No full text
    Fibroblast growth factor-binding protein 1 (FGFBP1, FGF-BP) is a secreted chaperone that mobilizes paracrine-acting FGFs, stored in the extracellular matrix, and presents them to their cognate receptors. FGFBP1 enhances FGF signaling including angiogenesis during cancer progression, and is upregulated in various cancers. Here we evaluated the contribution of endogenous FGFBP1 to development and homeostasis as well as to skin pathologies utilizing Fgfbp1-knockout (KO) mice. Relative to wild-type (WT) littermates KO mice showed no gross pathologies. Still, in KO mice a significant thickening of the epidermis associated with a decreased transepidermal water loss and increased pro-inflammatory gene expression in the skin was detected. Also, skin carcinogen challenge by DMBA/TPA resulted in delayed and reduced papillomatosis in KO mice. This was paralleled by delayed healing of skin wounds and reduced angiogenic sprouting in subcutaneous matrigel plugs. Heterozygous GFP-knock-in mice revealed rapid induction of gene expression during papilloma induction and during wound healing. Examination of WT skin grafted onto Fgfbp1 GFP knockin reporter hosts and bone marrow transplants from the GFP reporter model into WT hosts revealed that circulating Fgfbp1-expressing cells migrate into healing wounds. We conclude that tissue-resident and circulating Fgfbp1-expressing cells modulate skin carcinogenesis and inflammation

    A time-based pheromone approach for the ant system

    No full text
    The ant system (AS) is a metaheuristic approach originally developed for solving the traveling salesman problem. AS has been successfully applied to various hard combinatorial optimization problems and different variants have been proposed in the literature. In this paper, we introduce a time-based pheromone approach for AS (TbAS). Due to this nature TbAS is applicable to routing problems involving time-windows. The novelty in TbAS is the multi-layer pheromone network structure which implicitly utilizes the service time information associated with the customers as a heuristic information. To investigate the performance of TbAS, we use the well-known vehicle routing problem with time-windows as our testbed and we conduct an extensive computational study using the Solomon [29] instances. Our results reveal that the proposed time-based pheromone approach is effective in obtaining good quality solutions

    Assessing the unified airway hypothesis in children via transcriptional profiling of the airway epithelium

    No full text
    © 2020 American Academy of Allergy, Asthma & Immunology Background: Emerging evidence suggests that disease vulnerability is expressed throughout the airways, the so-called unified airway hypothesis, but the evidence to support this is predominantly indirect. Objectives: We sought to establish the transcriptomic profiles of the upper and lower airways and determine their level of similarity irrespective of airway symptoms (wheeze) and allergy. Methods: We performed RNA sequencing on upper and lower airway epithelial cells from 63 children with or without wheeze and accompanying atopy, using differential gene expression and gene coexpression analyses to determine transcriptional similarity. Results: We observed approximately 91% homology in the expressed genes between the 2 sites. When coexpressed genes were grouped into modules relating to biological functions, all were found to be conserved between the 2 regions, resulting in a consensus network containing 16 modules associated with ribosomal function, metabolism, gene expression, mitochondrial activity, and antiviral responses through IFN activity. Although symptom-associated gene expression changes were more prominent in the lower airway, they were reflected in nasal epithelium and included IL-1 receptor like 1, prostaglandin-endoperoxide synthase 1, CCL26, and periostin. Through network analysis we identified a cluster of coexpressed genes associated with atopic wheeze in the lower airway, which could equally distinguish atopic and nonatopic phenotypes in upper airway samples. Conclusions: We show that the upper and lower airways are significantly conserved in their transcriptional composition, and that variations associated with disease are present in both nasal and tracheal epithelium. Findings from this study supporting a unified airway imply that clinical insight regarding the lower airway in health and disease can be gained from studying the nasal epithelium
    corecore