26 research outputs found

    Radical Concept Generation Inspired by Cross-Domain Knowledge

    No full text
    Cross-domain knowledge can stimulate radical concept generation (RCG), but there is a lack of guidance to utilize the cross-domain knowledge for RCG. This paper proposes an effective process of RCG in four steps: (1) Identifying radical technology opportunities based on analysis of the dynamic relationship between demand and technical performances; (2) Applying laws and lines of the technological system evolution to determine the search direction of cross-domain knowledge in a qualitative perspective; (3) Taking the minimum complementary distance measure for appropriate cross-domain knowledge in a quantitative perspective; (4) Forming radical concepts using the cross-domain knowledge as inspirations. The method reduces risks and costs caused by uncertainty in RCG and has potential to fertilize research on radical innovation and knowledge-based innovation. A radical concept of gas generator demonstrates the effectiveness of the proposed method

    A Super-Twisting Sliding-Mode Stator Flux Observer for Sensorless Direct Torque and Flux Control of IPMSM

    No full text
    The scheme based on direct torque and flux control (DTFC) as well as active flux is a good choice for the interior permanent magnet synchronous motor (IPMSM) sensorless control. The precision of the stator flux observation is essential for this scheme. However, the performance of traditional observers like pure integrator and the low-pass filter (LPF) is severely deteriorated by disturbances, especially dc offset. Recently, a sliding-mode stator flux observer (SMFO) was proposed to reduce the dc offset in the estimated stator flux. However, it cannot eliminate the dc offset totally and will cause the chattering problem. To solve these problems, a novel super-twisting sliding-mode stator flux observer (STSMFO) is proposed in this paper. Compared with SMFO, STSMFO can reduce the chattering and fully eliminate the dc offset without any amplitude and phase compensation. Then, the precision of the stator flux and rotor position can be greatly improved over a wide speed region. The detailed mathematical analysis has been given for comparing it with another three traditional observers. The numerical simulations and experimental testing with an IPMSM drive platform have been implemented to verify the capability of the proposed sensorless scheme

    A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and MODIS Data

    No full text
    Land surface temperature (LST) is a critical state variable of land surface energy equilibrium and a key indicator of environmental change such as climate change, urban heat island, and freezing-thawing hazard. The high spatial and temporal resolution datasets are urgently needed for a variety of environmental change studies, especially in remote areas with few LST observation stations. MODIS and Landsat satellites have complementary characteristics in terms of spatial and temporal resolution for LST retrieval. To make full use of their respective advantages, this paper developed a pixel-based multi-spatial resolution adaptive fusion modeling framework (called pMSRAFM). As an instance of this framework, the data fusion model for joint retrieval of LST from Landsat-8 and MODIS data was implemented to generate the synthetic LST with Landsat-like spatial resolution and MODIS temporal information. The performance of pMSRAFM was tested and validated in the Heihe River Basin located in China. The results of six experiments showed that the fused LST was high similarity to the direct Landsat-derived LST with structural similarity index (SSIM) of 0.83 and the index of agreement (d) of 0.84. The range of SSIM was 0.65–0.88, the root mean square error (RMSE) yielded a range of 1.6–3.4 °C, and the averaged bias was 0.6 °C. Furthermore, the temporal information of MODIS LST was retained and optimized in the synthetic LST. The RMSE ranged from 0.7 °C to 1.5 °C with an average value of 1.1 °C. When compared with in situ LST observations, the mean absolute error and bias were reduced after fusion with the mean absolute bias of 1.3 °C. The validation results that fused LST possesses the spatial pattern of Landsat-derived LSTs and inherits most of the temporal properties of MODIS LSTs at the same time, so it can provide more accurate and credible information. Consequently, pMSRAFM can be served as a promising and practical fusion framework to prepare a high-quality LST spatiotemporal dataset for various applications in environment studies

    Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information

    No full text
    Land surface temperature (LST) products derived from the moderate resolution imaging spectroradiometer (MODIS) sensor are one of the most important data sources used to research land surface energy and water balance at regional and global scales. However, MODIS data are severely contaminated by cloud cover, which limits the applications of LST products. In this paper, based on the spatio-temporal autocorrelation of land surface variables, a reconstruction algorithm depending on the correlations between spatial pixels in multiple time phases from available MODIS LST data is developed to reconstruct clear-sky LST values for missing pixels. Considering the impacts of correlation and bias between predictors and reconstructed data on the modeling error, the known data in the reconstructed time phase are combined with the data temporally nearest to them as predictor variables to establish their temporal relationships with the reconstructed data. The reconstructed results are validated by a series of evaluation indices. The average correlation coefficient between the reconstructed results and ground-based observations is 0.87, showing high temporal change accuracy. The difference in Moran’s I, representing spatial structure characteristics between the known and reconstructed data, is 0.03 on average, indicating a slight loss of spatial accuracy. The average reconstruction rate is approximately 87.0%. The modeling error, as part of the reconstruction error, is only 1.40 K on average and accounts for 5.0% of the total error. If the product and modeling errors are removed, the residual error represents approximately 3.5 K and 5.6 K of the annual mean difference between the cloudy and cloudless LST at night and during the day, respectively. In addition, different reconstruction cases are demonstrated using various predictor data, including many combinations of multi-temporal MODIS LST data, the microwave brightness temperature, and the combination of the normalized difference vegetation index and terrain data. Comparisons among cases show that the known MODIS LST data are more reliable as predictor variables and that the data combination advocated in this paper is optimal

    New Scheme for Validating Remote-Sensing Land Surface Temperature Products with Station Observations

    No full text
    Continuous land-surface temperature (LST) observations from ground-based stations are an important reference dataset for validating remote-sensing LST products. However, a lack of evaluations of the representativeness of station observations limits the reliability of validation results. In this study, a new practical validation scheme is presented for validating remote-sensing LST products that includes a key step: assessing the spatial representativeness of ground-based LST measurements. Three indicators, namely, the dominant land-cover type (DLCT), relative bias (RB), and average structure scale (ASS), are established to quantify the representative levels of station observations based on the land-cover type (LCT) and LST reference maps with high spatial resolution. We validated MODIS LSTs using station observations from the Heihe River Basin (HRB) in China. The spatial representative evaluation steps show that the representativeness of observations greatly differs among stations and varies with different vegetation growth and other factors. Large differences in the validation results occur when using different representative level observations, which indicates a large potential for large error during the traditional T-based validation scheme. Comparisons show that the new validation scheme greatly improves the reliability of LST product validation through high-level representative observations

    Pore structure and splitting tensile strength of hybrid Basalt–Polypropylene fiber reinforced concrete subjected to carbonation

    No full text
    10.1016/j.conbuildmat.2021.123779Construction and Building Materials297123779-123779complete

    An Effective Similar-Pixel Reconstruction of the High-Frequency Cloud-Covered Areas of Southwest China

    No full text
    With advantages of multispatial resolutions, a high retrieval accuracy, and a high temporal resolution, the satellite-derived land surface temperature (LST) products are very important LST sources. However, the greatest barrier to their wide application is the invalid values produced by large quantities of cloudy pixels, especially for regions frequently swathed in clouds. In this study, an effective method based on the land energy balance theory and similar pixels (SP) method was developed to reconstruct the LSTs over cloudy pixels for the widely used MODIS LST (MOD11A1). The southwest region of China was selected as the study area, where extreme drought has frequently occurred in recent years in the context of global climate change and which commonly exhibits cloudy and foggy weather. The validation results compared with in situ LSTs showed that the reconstructed LSTs have an average error < 1.00 K (0.57 K at night and −0.14 K during the day) and an RMSE < 3.20 K (1.90 K at night and 3.16 K in the daytime). The experiment testing the SP interpolation indicated that the spatial structure of the LST has a greater effect on the SP performance than the size of the data-missing area, which benefits the LST reconstruction in the area frequently covered by large clouds

    Welding and Joining of Titanium Aluminides

    No full text
    Welding and joining of titanium aluminides is the key to making them more attractive in industrial fields. The purpose of this review is to provide a comprehensive overview of recent progress in welding and joining of titanium aluminides, as well as to introduce current research and application. The possible methods available for titanium aluminides involve brazing, diffusion bonding, fusion welding, friction welding and reactive joining. Of the numerous methods, solid-state diffusion bonding and vacuum brazing have been most heavily investigated for producing reliable joints. The current state of understanding and development of every welding and joining method for titanium aluminides is addressed respectively. The focus is on the fundamental understanding of microstructure characteristics and processing–microstructure–property relationships in the welding and joining of titanium aluminides to themselves and to other materials
    corecore