63 research outputs found

    PaletteNeRF: Palette-based Color Editing for NeRFs

    Full text link
    Neural Radiance Field (NeRF) is a powerful tool to faithfully generate novel views for scenes with only sparse captured images. Despite its strong capability for representing 3D scenes and their appearance, its editing ability is very limited. In this paper, we propose a simple but effective extension of vanilla NeRF, named PaletteNeRF, to enable efficient color editing on NeRF-represented scenes. Motivated by recent palette-based image decomposition works, we approximate each pixel color as a sum of palette colors modulated by additive weights. Instead of predicting pixel colors as in vanilla NeRFs, our method predicts additive weights. The underlying NeRF backbone could also be replaced with more recent NeRF models such as KiloNeRF to achieve real-time editing. Experimental results demonstrate that our method achieves efficient, view-consistent, and artifact-free color editing on a wide range of NeRF-represented scenes.Comment: 12 pages, 10 figure

    OpenAGI: When LLM Meets Domain Experts

    Full text link
    Human intelligence has the remarkable ability to assemble basic skills into complex ones so as to solve complex tasks. This ability is equally important for Artificial Intelligence (AI), and thus, we assert that in addition to the development of large, comprehensive intelligent models, it is equally crucial to equip such models with the capability to harness various domain-specific expert models for complex task-solving in the pursuit of Artificial General Intelligence (AGI). Recent developments in Large Language Models (LLMs) have demonstrated remarkable learning and reasoning abilities, making them promising as a controller to select, synthesize, and execute external models to solve complex tasks. In this project, we develop OpenAGI, an open-source AGI research platform, specifically designed to offer complex, multi-step tasks and accompanied by task-specific datasets, evaluation metrics, and a diverse range of extensible models. OpenAGI formulates complex tasks as natural language queries, serving as input to the LLM. The LLM subsequently selects, synthesizes, and executes models provided by OpenAGI to address the task. Furthermore, we propose a Reinforcement Learning from Task Feedback (RLTF) mechanism, which uses the task-solving result as feedback to improve the LLM's task-solving ability. Thus, the LLM is responsible for synthesizing various external models for solving complex tasks, while RLTF provides feedback to improve its task-solving ability, enabling a feedback loop for self-improving AI. We believe that the paradigm of LLMs operating various expert models for complex task-solving is a promising approach towards AGI. To facilitate the community's long-term improvement and evaluation of AGI's ability, we open-source the code, benchmark, and evaluation methods of the OpenAGI project at https://github.com/agiresearch/OpenAGI.Comment: 18 pages, 6 figures, 7 table

    ASP: Automatic Selection of Proxy dataset for efficient AutoML

    Full text link
    Deep neural networks have gained great success due to the increasing amounts of data, and diverse effective neural network designs. However, it also brings a heavy computing burden as the amount of training data is proportional to the training time. In addition, a well-behaved model requires repeated trials of different structure designs and hyper-parameters, which may take a large amount of time even with state-of-the-art (SOTA) hyper-parameter optimization (HPO) algorithms and neural architecture search (NAS) algorithms. In this paper, we propose an Automatic Selection of Proxy dataset framework (ASP) aimed to dynamically find the informative proxy subsets of training data at each epoch, reducing the training data size as well as saving the AutoML processing time. We verify the effectiveness and generalization of ASP on CIFAR10, CIFAR100, ImageNet16-120, and ImageNet-1k, across various public model benchmarks. The experiment results show that ASP can obtain better results than other data selection methods at all selection ratios. ASP can also enable much more efficient AutoML processing with a speedup of 2x-20x while obtaining better architectures and better hyper-parameters compared to utilizing the entire dataset.Comment: This paper was actually finished in 202

    User-Controllable Recommendation via Counterfactual Retrospective and Prospective Explanations

    Full text link
    Modern recommender systems utilize users' historical behaviors to generate personalized recommendations. However, these systems often lack user controllability, leading to diminished user satisfaction and trust in the systems. Acknowledging the recent advancements in explainable recommender systems that enhance users' understanding of recommendation mechanisms, we propose leveraging these advancements to improve user controllability. In this paper, we present a user-controllable recommender system that seamlessly integrates explainability and controllability within a unified framework. By providing both retrospective and prospective explanations through counterfactual reasoning, users can customize their control over the system by interacting with these explanations. Furthermore, we introduce and assess two attributes of controllability in recommendation systems: the complexity of controllability and the accuracy of controllability. Experimental evaluations on MovieLens and Yelp datasets substantiate the effectiveness of our proposed framework. Additionally, our experiments demonstrate that offering users control options can potentially enhance recommendation accuracy in the future. Source code and data are available at \url{https://github.com/chrisjtan/ucr}.Comment: Accepted for presentation at 26th European Conference on Artificial Intelligence (ECAI2023
    corecore