3 research outputs found

    Do sex differences in the prevalence of ECG abnormalities vary across ethnic groups living in the Netherlands? A cross-sectional analysis of the population-based HELIUS study

    Get PDF
    OBJECTIVES: Major ECG abnormalities have been associated with increased risk of cardiovascular disease (CVD) burden in asymptomatic populations. However, sex differences in occurrence of major ECG abnormalities have been poorly studied, particularly across ethnic groups. The objectives were to investigate (1) sex differences in the prevalence of major and, as a secondary outcome, minor ECG abnormalities, (2) whether patterns of sex differences varied across ethnic groups, by age and (3) to what extent conventional cardiovascular risk factors contributed to observed sex differences. DESIGN: Cross-sectional analysis of population-based study. SETTING: Multi-ethnic, population-based Healthy Life in an Urban Setting cohort, Amsterdam, the Netherlands. PARTICIPANTS: 8089 men and 11 369 women of Dutch, South-Asian Surinamese, African Surinamese, Ghanaian, Turkish and Moroccan origin aged 18-70 years without CVD. OUTCOME MEASURES: Age-adjusted and multivariable logistic regression analyses were performed to study sex differences in prevalence of major and, as secondary outcome, minor ECG abnormalities in the overall population, across ethnic groups and by age-groups (18-35, 36-50 and >50 years). RESULTS: Major and minor ECG abnormalities were less prevalent in women than men (4.6% vs 6.6% and 23.8% vs 39.8%, respectively). After adjustment for conventional risk factors, sex differences in major abnormalities were smaller in ethnic minority groups (OR ranged from 0.61 in Moroccans to 1.32 in South-Asian Surinamese) than in the Dutch (OR 0.49; 95% CI 0.36 to 0.65). Only in South-Asian Surinamese, women did not have a lower odds than men (OR 1.32; 95% CI 0.96 to 1.84). The pattern of smaller sex differences in ethnic minority groups was more pronounced in older than in younger age-groups. CONCLUSIONS: The prevalence of major ECG abnormalities was lower in women than men. However, sex differences were less apparent in ethnic minority groups. Conventional risk factors did not contribute substantially to observed sex differences

    Left axis deviation in brugada syndrome: Vectorcardiographic evaluation during ajmaline provocation testing reveals additional depolarization abnormalities

    Get PDF
    Patients with Brugada syndrome (BrS) can show a leftward deviation of the frontal QRS-axis upon provocation with sodium channel blockers. The cause of this axis change is unclear. In this study, we aimed to determine (1) the prevalence of this left axis deviation and (2) to evaluate its cause, using the insights that could be derived from vectorcardiograms. Hence, from a large cohort of patients who underwent ajmaline provocation testing (n = 1430), we selected patients in whom a type-1 BrS-ECG was evoked (n = 345). Depolarization and repolarization parameters were analyzed for reconstructed vectorcardiograms and were compared between patients with and without a >30◦ leftward axis shift. We found (1) that the prevalence of a left axis deviation during provocation testing was 18% and (2) that this left axis deviation was not explained by terminal conduction slowing in the right ventricular outflow tract (4th QRS-loop quartile: +17 ± 14 ms versus +13 ± 15 ms, nonsignificant) but was associated with a more proximal conduction slowing (1st QRS-loop quartile: +12[8;18] ms versus +8[4;12] ms, p < 0.001 and 3rd QRS-loop quartile: +12 ± 10 ms versus +5 ± 7 ms, p < 0.001). There was no important heterogeneity of the action potential morphology (no difference in the ventricular gradient), but a left axis deviation did result in a dis

    Predicting cardiac electrical response to sodium-channel blockade and Brugada syndrome using polygenic risk scores

    Get PDF
    AIMS: Sodium-channel blockers (SCBs) are associated with arrhythmia, but variability of cardiac electrical response remains unexplained. We sought to identify predictors of ajmaline-induced PR and QRS changes and Type I Brugada syndrome (BrS) electrocardiogram (ECG). METHODS AND RESULTS: In 1368 patients that underwent ajmaline infusion for suspected BrS, we performed measurements of 26 721 ECGs, dose-response mixed modelling and genotyping. We calculated polygenic risk scores (PRS) for PR interval (PRSPR), QRS duration (PRSQRS), and Brugada syndrome (PRSBrS) derived from published genome-wide association studies and used regression analysis to identify predictors of ajmaline dose related PR change (slope) and QRS slope. We derived and validated using bootstrapping a predictive model for ajmaline-induced Type I BrS ECG. Higher PRSPR, baseline PR, and female sex are associated with more pronounced PR slope, while PRSQRS and age are positively associated with QRS slope (P < 0.01 for all). PRSBrS, baseline QRS duration, presence of Type II or III BrS ECG at baseline, and family history of BrS are independently associated with the occurrence of a Type I BrS ECG, with good predictive accuracy (optimism-corrected C-statistic 0.74). CONCLUSION: We show for the first time that genetic factors underlie the variability of cardiac electrical response to SCB. PRSBrS, family history, and a baseline ECG can predict the development of
    corecore