6 research outputs found

    The novel mu-opioid antagonist, GSK1521498, reduces ethanol consumption in C57BL/6J mice.

    Get PDF
    RATIONALE Using the drinking-in-the-dark (DID) model, we compared the effects of a novel mu-opioid receptor antagonist, GSK1521498, with naltrexone, a licensed treatment of alcohol dependence, on ethanol consumption in mice. OBJECTIVE We test the ability of GSK1521498 to reduce alcohol consumption and compare its intrinsic efficacy to that of naltrexone by comparing the two drugs at doses matched for equivalent receptor occupancy. METHODS Thirty-six C57BL/6J mice were tested in a DID procedure. In 2-day cycles, animals experienced one baseline, injection-free session, and one test session when they received two injections, one of test drug and one placebo. All animals received GSK1521498 (0, 0.1, 1 and 3 mg/kg, i.p., 30 min pre-treatment) and naltrexone (0, 0.1, 1 and 3 mg/kg, s.c. 10 min pre-treatment) in a cross-over design. Receptor occupancies following the same doses were determined ex vivo in separate groups by autoradiography, using [3H]DAMGO. Binding in the region of interest was measured integrally by computer-assisted microdensitometry and corrected for non-specific binding. RESULTS Both GSK1521498 and naltrexone dose-dependently decreased ethanol consumption. When drug doses were matched for 70-75 % receptor occupancy, GSK1521498 3 mg/kg, i.p., caused a 2.5-fold greater reduction in alcohol consumption than naltrexone 0.1 mg/kg, s.c. Both GSK1521498 and naltrexone significantly reduced sucrose consumption at a dose of 1 mg/kg but not 0.1 mg/kg. In a test of conditioned taste aversion, GSK1521498 (3 mg/kg) reduced sucrose consumption 24 h following exposure to a conditioning injection. CONCLUSIONS Both opioid receptor antagonists reduced alcohol consumption but GK1521498 has higher intrinsic efficacy than naltrexone

    Performance deficits of NK1 receptor knockout mice in the 5 choice serial reaction time task: effects of d Amphetamine, stress and time of day.

    Get PDF
    Background The neurochemical status and hyperactivity of mice lacking functional substance P-preferring NK1 receptors (NK1R-/-) resemble abnormalities in Attention Deficit Hyperactivity Disorder (ADHD). Here we tested whether NK1R-/- mice express other core features of ADHD (impulsivity and inattentiveness) and, if so, whether they are diminished by d-amphetamine, as in ADHD. Prompted by evidence that circadian rhythms are disrupted in ADHD, we also compared the performance of mice that were trained and tested in the morning or afternoon. Methods and Results The 5-Choice Serial Reaction-Time Task (5-CSRTT) was used to evaluate the cognitive performance of NK1R-/- mice and their wildtypes. After training, animals were tested using a long (LITI) and a variable (VITI) inter-trial interval: these tests were carried out with, and without, d-amphetamine pretreatment (0.3 or 1 mg/kg i.p.). NK1R-/- mice expressed greater omissions (inattentiveness), perseveration and premature responses (impulsivity) in the 5-CSRTT. In NK1R-/- mice, perseveration in the LITI was increased by injection-stress but reduced by d-amphetamine. Omissions by NK1R-/- mice in the VITI were unaffected by d-amphetamine, but premature responses were exacerbated by this psychostimulant. Omissions in the VITI were higher, overall, in the morning than the afternoon but, in the LITI, premature responses of NK1R-/- mice were higher in the afternoon than the morning. Conclusion In addition to locomotor hyperactivity, NK1R-/- mice express inattentiveness, perseveration and impulsivity in the 5-CSRTT, thereby matching core criteria for a model of ADHD. Because d-amphetamine reduced perseveration in NK1R-/- mice, this action does not require functional NK1R. However, the lack of any improvement of omissions and premature responses in NK1R-/- mice given d-amphetamine suggests that beneficial effects of this psychostimulant in other rodent models, and ADHD patients, need functional NK1R. Finally, our results reveal experimental variables (stimulus parameters, stress and time of day) that could influence translational studies

    Sp1 and NFkappaB pathways are regulated in brain in response to acute and chronic ethanol

    No full text
    DNA microarray analysis was used to identify candidate ethanol-regulated genes, as a first step towards exploring how transcriptional changes might lead to ethanol-induced changes in behaviour. Mice were treated with a single acute intraperitoneal ethanol dose and DNA microarray analysis performed on midbrain 2 h posttreatment. We predicted that if ethanol-regulated genes contribute towards behaviour, then constitutive variation in brain expression levels may also contribute to strain-specific differences in ethanol-related behaviour of inbred mouse strains. On the basis of this assumption, we interrogated the BXD inbred strain phenotype database and the U74Av2 MAS5 brain expression database using the WebQTL tool (http://www.genenetwork.org/) and correlated ethanol-related behaviours to expression levels. Constitutive expression levels of 70/90 candidate genes, identified from the DNA microarray analysis, varied significantly between inbred strains and correlated significantly with strain-specific differences in ethanol-related behaviours. These genes were then mapped onto biochemical pathways using Stratagene's PathwayAssist software. This analysis identified the transcription factor Sp1 and NFkappaB pathways in the acute response to ethanol. Ethanol regulation of Sp1 transcription was conserved between humans and mouse. As predicted, downstream targets of Sp1 were also ethanol regulated. NFkappaBia, an important regulator of NFkappaB function and Rela, an NFkappaB-binding partner, were both regulated by ethanol. Expression of both Sp1 and NFkappaBialpha were also downregulated following chronic ethanol treatment. As Sp1 and NFkappaB are implicated in plasticity and behaviour, our data suggest a role for these transcription factors in the long-term behavioural adaptations to ethanol

    Ethanol modifies the effect of handling stress on gene expression: problems in the analysis of two-way gene expression studies in mouse brain

    No full text
    Studies analysing the effects of acute treatments on animal behaviour and brain biochemistry frequently use pairwise comparisons between sham-treated and -untreated animals. In this study, we analyse expression of tPA, Grik2, Smarca2 and the transcription factor, Sp1, in mouse cerebellum following acute ethanol treatment. Expression is compared to saline-injected and -untreated control animals. We demonstrate that acute i.p. injection of saline may alter gene expression in a gene-specific manner and that ethanol may modify the effects of sham treatment on gene expression, as well as inducing specific effects independent of any handling related stress. In addition to demonstrating the complexity of gene expression in response to physical and environmental stress, this work raises questions on the interpretation and validity of studies relying on pairwise comparisons
    corecore