161 research outputs found

    Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete

    Get PDF
    This paper presents an experimental investigation on the effect of concrete compressive strength and confinement method on confined high and ultra high-strength concrete (HSC and UHSC) specimens. A total of 55 fiber reinforced polymer (FRP) confined concrete specimens were tested under monotonic axial compression. All specimens were cylinders with 152 mm diameter and 305 mm height and confined by carbon FRP (CFRP). Three different concrete mixes were examined, with average compressive strengths of 35, 65 and 100 MPa. The effect of the confinement method was also examined with FRP-wrapped specimens compared to FRP tube-encased specimens. Axial and lateral behavior was recorded to observe the axial stress-strain relationship and lateral strain behavior for concentric compression. Ultimate axial and lateral conditions are tabulated and the complete stress-strain curves have been provided. The experimental results presented in this paper provide a performance comparison between FRP-confined conventional normal-strength concrete (NSC) and the lesser understood area of FRP-confined HSC and UHSC. The results of this experimental study clearly indicate that above a certain confinement threshold, FRP-confined HSC and UHSC exhibits highly ductile behavior, however for the same normalized confinement pressures, axial performance of FRP-confined concrete reduces as concrete strength increases. The results also indicate that ultimate conditions of FRP-wrapped specimens are similar to those confined by FRP tubes, however a performance difference is evident at the transition region. The performance of 10 existing stress-strain models were assessed against the experimental datasets and the performance of these models discussed. The results of this model assessment revealed the need for further development for stress-strain models developed specifically for FRP-confined HSC or UHSC. © 2013 Elsevier Ltd. All rights reserved.Thomas Vincent, Togay Ozbakkalogl

    Round robin testing initiative for fiber reinforced polymer (FRP) reinforcement

    Get PDF
    An international Round Robin Testing (RRT) programme on FRP reinforcement was conducted within the framework of the Marie Curie Research Training Network, ENCORE, and with the support of Task Group 9.3 of the International Federation for Structural Concrete (fib). Eleven laboratories and six manufacturers and suppliers participated in this exercise. As part of this extensive experimental endeavour, one or more of the following tests were performed by the participating laboratories: 1) tensile tests on FRP bars and strips; 2) tensile tests on FRP laminates; 3) double bond shear tests on FRP laminates (Externally Bonded Reinforcement, EBR) and FRP bars/strip (Near Surface Mounted reinforcement, NSM). This paper will discusses the results of the RRT initiative, among which the experimental results of bond tests on concrete specimens strengthened with EBR and NSM FRP

    Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model

    Get PDF
    A large number of experimental studies have been conducted over the last two decades to understand the behavior of FRP-confined concrete columns. This paper presents a comprehensive test database constructed from the results of axial compression tests on 832 circular FRP-confined concrete specimens published in the literature. The database was assembled through an extensive review of the literature that covered 3042 test results from 253 experimental studies published between 1991 and the middle of 2013. The suitability of the results for the database was determined using carefully chosen selection criteria to ensure a reliable database. This database brings reliable test results of FRP-confined concrete together to form a unified framework for future reference. Close examination of the test results reported in the database led to a number of important observations on the influence of important parameters on the behavior of FRP-confined concrete. A new design-oriented model that was developed to quantify these observations is presented in the final part of the paper. It is shown that the predictions of the proposed model are in close agreement with the test results and the model provides improved predictions of the ultimate conditions of FRP-confined concrete compared to any of the existing models. © 2013 Elsevier Ltd. All rights reserved.Togay Ozbakkaloglu, Jian C. Li

    FRP reinforcement in RC structures

    Get PDF
    fib Bulletin 40 deals mainly with the use of FRP bars as internal reinforcement for concrete structures. The background of the main physical and mechanical properties of FRP reinforcing bars is presented, with special emphasis on durability aspects. For each of the typical ultimate and serviceability limit states, the basic mechanical model is given, followed by different design models according to existing codes or design guidelines

    2nd USA-USSR Symposium on Fracture of Composite Materials

    No full text
    corecore