159 research outputs found

    Optimization of Post-Surgery Wake Up Time Providing Adequate Analgesia

    Get PDF
    What is the best drug concentration during anesthesia? We are creating algorithms to minimize pain and shorten wake up time after surgery. This will be used by anesthesiologist during surgery to continuously provide optimal drug cocktails with surgery and patient specificity

    Optimization Methods to Minimize Emergence Time While Maintaining Adequate Post-Operative Analgesia

    Get PDF
    A rapid emergence from anesthesia combined with an extended duration of adequate analgesia is desired. Difficulties arise when trying to achieve a rapid emergence and provide adequate analgesia for procedures associated with moderate post operative pain. We propose to use pharmacokinetic (PK) and pharmacodynamic (PD) models with optimization techniques to determine anesthetic drugs ratios to improve post-anesthetic outcomes of emergence and analgesia. We hypothesize that optimized propofol, remifentanil, and fentanyl administrations will shorten emergence time and extend the period of adequate analgesia during patient recovery. Anesthesiologists administered a general anesthetic to 21 patients for laparoscopic procedures with propofol, remifentanil, and fentanyl according to their standard practice. The theoretical improvement provided by the optimization was measured by comparing the time differences between the control predictions and the optimized prediction of the TROR time and TRON time. In the control group the TROR was 10.2+-5.8 minutes (mean +- SD) and TRON was 3.5+-5.0 minutes after emergence. In the optimized group the TROR was 7.5+-2.2 minutes or 26% faster (p \u3c .001, paired t-test) and the TRON was 7.4 +-2.4 minutes or 88% longer (p \u3c .00001, t-test). Optimized administrations of propofol, remifentanil, and fentanyl resulted in a theoretically shorter emergence time and a longer period of adequate postoperative analgesia. The optimization algorithm shows potential for real-time clinical guidance in drug management

    A European reference collection of rose varieties : final report

    Get PDF
    An integrated pilot database was constructed containing administrative, morphological and molecular data as well as pictures of each variety. In spite of some encountered difficulties, it was demonstrated that two laboratories can produce substantially equivalent data and that the molecular data produced is useful as a tool for managing reference collections, prescreening and quality assuranc

    Overproduction of Phospholipids by the Kennedy Pathway Leads to Hypervirulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic human fungal pathogen that causes life-threatening systemic infections, as well as oral mucosal infections. Phospholipids are crucial for pathogenesis in C. albicans, as disruption of phosphatidylserine (PS) and phosphatidylethanolamine (PE) biosynthesis within the cytidine diphosphate diacylglycerol (CDP-DAG) pathway causes avirulence in a mouse model of systemic infection. The synthesis of PE by this pathway plays a crucial role in virulence, but it was unknown if downstream conversion of PE to phosphatidylcholine (PC) is required for pathogenicity. Therefore, the enzymes responsible for methylating PE to PC, Pem1 and Pem2, were disrupted. The resulting pem1Δ/Δ pem2Δ/Δ mutant was not less virulent in mice, but rather hypervirulent. Since the pem1Δ/Δ pem2Δ/Δ mutant accumulated PE, this led to the hypothesis that increased PE synthesis increases virulence. To test this, the alternative Kennedy pathway for PE/PC synthesis was exploited. This pathway makes PE and PC from exogenous ethanolamine and choline, respectively, using three enzymatic steps. In contrast to Saccharomyces cerevisiae, C. albicans was found to use one enzyme, Ept1, for the final enzymatic step (ethanolamine/cholinephosphotransferase) that generates both PE and PC. EPT1 was overexpressed, which resulted in increases in both PE and PC synthesis. Moreover, the EPT1 overexpression strain is hypervirulent in mice and causes them to succumb to system infection more rapidly than wild-type. In contrast, disruption of EPT1 causes loss of PE and PC synthesis by the Kennedy pathway, and decreased kidney fungal burden during the mouse systemic infection model, indicating a mild loss of virulence. In addition, the ept1Δ/Δ mutant exhibits decreased cytotoxicity against oral epithelial cells in vitro, whereas the EPT1 overexpression strain exhibits increased cytotoxicity. Taken altogether, our data indicate that mutations that result in increased PE synthesis cause greater virulence and mutations that decrease PE synthesis attenuate virulence

    Lettuce (Lactuca sativa) productivity influenced by microbial inocula under nitrogen-limited conditions in aquaponics.

    Get PDF
    The demand for food will outpace productivity of conventional agriculture due to projected growth of the human population, concomitant with shrinkage of arable land, increasing scarcity of freshwater, and a rapidly changing climate. While aquaponics has potential to sustainably supplement food production with minimal environmental impact, there is a need to better characterize the complex interplay between the various components (fish, plant, microbiome) of these systems to optimize scale up and productivity. Here, we investigated how the commonly-implemented practice of continued microbial community transfer from pre-existing systems might promote or impede productivity of aquaponics. Specifically, we monitored plant growth phenotypes, water chemistry, and microbiome composition of rhizospheres, biofilters, and fish feces over 61-days of lettuce (Lactuca sativa var. crispa) growth in nitrogen-limited aquaponic systems inoculated with bacteria that were either commercially sourced or originating from a pre-existing aquaponic system. Lettuce above- and below-ground growth were significantly reduced across replicates treated with a pre-existing aquaponic system inoculum when compared to replicates treated with a commercial inoculum. Reduced productivity was associated with enrichment in specific bacterial genera in plant roots, including Pseudomonas, following inoculum transfer from pre-existing systems. Increased productivity was associated with enrichment of nitrogen-fixing Rahnella in roots of plants treated with the commercial inoculum. Thus, we show that inoculation from a pre-existing system, rather than from a commercial inoculum, is associated with lower yields. Further work will be necessary to test the putative mechanisms involved

    Overproduction of Phospholipids by the Kennedy Pathway Leads to Hypervirulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic human fungal pathogen that causes life-threatening systemic infections, as well as oral mucosal infections. Phospholipids are crucial for pathogenesis in C. albicans, as disruption of phosphatidylserine (PS) and phosphatidylethanolamine (PE) biosynthesis within the cytidine diphosphate diacylglycerol (CDP-DAG) pathway causes avirulence in a mouse model of systemic infection. The synthesis of PE by this pathway plays a crucial role in virulence, but it was unknown if downstream conversion of PE to phosphatidylcholine (PC) is required for pathogenicity. Therefore, the enzymes responsible for methylating PE to PC, Pem1 and Pem2, were disrupted. The resulting pem1Δ/Δ pem2Δ/Δ mutant was not less virulent in mice, but rather hypervirulent. Since the pem1Δ/Δ pem2Δ/Δ mutant accumulated PE, this led to the hypothesis that increased PE synthesis increases virulence. To test this, the alternative Kennedy pathway for PE/PC synthesis was exploited. This pathway makes PE and PC from exogenous ethanolamine and choline, respectively, using three enzymatic steps. In contrast to Saccharomyces cerevisiae, C. albicans was found to use one enzyme, Ept1, for the final enzymatic step (ethanolamine/cholinephosphotransferase) that generates both PE and PC. EPT1 was overexpressed, which resulted in increases in both PE and PC synthesis. Moreover, the EPT1 overexpression strain is hypervirulent in mice and causes them to succumb to system infection more rapidly than wild-type. In contrast, disruption of EPT1 causes loss of PE and PC synthesis by the Kennedy pathway, and decreased kidney fungal burden during the mouse systemic infection model, indicating a mild loss of virulence. In addition, the ept1Δ/Δ mutant exhibits decreased cytotoxicity against oral epithelial cells in vitro, whereas the EPT1 overexpression strain exhibits increased cytotoxicity. Taken altogether, our data indicate that mutations that result in increased PE synthesis cause greater virulence and mutations that decrease PE synthesis attenuate virulence

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    New Method to Calculate the Sign and Relative Strength of Magnetic Interactions in Low-Dimensional Systems on the Basis of Structural Data

    Full text link
    The connection of strength of magnetic interactions and type ordering the magnetic moments with crystal chemical characteristics in low-dimensional magnets is investigated. The new method to calculate the sign and relative strength of magnetic interactions in low-dimensional systems on the basis of the structural data is proposed. This method allows to estimate magnetic interactions not only inside low-dimensional fragments but also between them, and also to predict the possibility of the occurrence of magnetic phase transitions and anomalies of the magnetic interactions. Moreover, it can be used for search of low-dimensional magnets among the compounds whose crystal structures are known. The possibilities of the method are illustrated in an example of research of magnetic interactions in familiar low-dimensional magnets SrCu2(BO3)2, CaCuGe2O6, CaV4O9, Cu2Te2O5Cl2, Cu2Te2O5Br2, BaCu2Si2O7, BaCu2Ge2O7, BaCuSi2O6, LiCu2O2, and NaCu2O2.Comment: 18 pages, 8 figures, 2 tables, published versio

    Homoplasy corrected estimation of genetic similarity from AFLP bands, and the effect of the number of bands on the precision of estimation

    Get PDF
    AFLP is a DNA fingerprinting technique, resulting in binary band presence–absence patterns, called profiles, with known or unknown band positions. We model AFLP as a sampling procedure of fragments, with lengths sampled from a distribution. Bands represent fragments of specific lengths. We focus on estimation of pairwise genetic similarity, defined as average fraction of common fragments, by AFLP. Usual estimators are Dice (D) or Jaccard coefficients. D overestimates genetic similarity, since identical bands in profile pairs may correspond to different fragments (homoplasy). Another complicating factor is the occurrence of different fragments of equal length within a profile, appearing as a single band, which we call collision. The bias of D increases with larger numbers of bands, and lower genetic similarity. We propose two homoplasy- and collision-corrected estimators of genetic similarity. The first is a modification of D, replacing band counts by estimated fragment counts. The second is a maximum likelihood estimator, only applicable if band positions are available. Properties of the estimators are studied by simulation. Standard errors and confidence intervals for the first are obtained by bootstrapping, and for the second by likelihood theory. The estimators are nearly unbiased, and have for most practical cases smaller standard error than D. The likelihood-based estimator generally gives the highest precision. The relationship between fragment counts and precision is studied using simulation. The usual range of band counts (50–100) appears nearly optimal. The methodology is illustrated using data from a phylogenetic study on lettuce
    corecore