69 research outputs found
Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (Odds) for cyclosporine-a
A combination of in situ gelling systems and a loaded drug self-assembling nanomicellar carrier was chosen in this study as a new potential Ocular Drug Delivery System (ODDS) for Cy-closporine-A (CyA), a poorly water-soluble drug. Two non-ionic surfactants (d-α-tocopherol polyethylene glycol succinate, VitE-TPGS and polyoxyl 40 hydrogenated castor oil, RH-40) were used to produce the nanomicelles. The physical–chemical characterization of the nanomicelles in terms of CyA entrapment (EE%) and loading efficiency (LE%), cloud point (CP), regeneration time (RT), size and polydispersity index (PI) allowed us to select the best combination of surfactant mixture, which showed appropriate stability, high CyA-EE (99.07%), very small and homogeneous dimen-sions and favored the solubilization of an amount of CyA (0.144% w/w) comparable to that con-tained in marketed emulsion Ikervis®. The selected nanomicellar formulation incorporated into optimized ion-sensitive polymeric dispersions of gellan gum (GG-LA: 0.10, 0.15 and 0.20% w/w) able to trigger the sol–gel transition after instillation was characterized from technological (osmo-lality, pH, gelling capacity, rheological behavior, wettability, TEM and storage stability at 4 and 20 °C) and biopharmaceutical points of view. This new combined approach allowed us to obtain clear aqueous dispersions that were easy to instill and able to form a viscous gel when in contact with the tear fluid, improving CyA ocular bioavailability. Furthermore, this new ODDS prevented CyA transcorneal permeation, exhibited low cytotoxicity and prolonged the CyA resident time in the precorneal area compared to Ikervis®
Hydrogels as Corneal Stroma Substitutes for In Vitro Evaluation of Drug Ocular Permeation
Hydrogels are complex hydrophilic structures, consisting of crosslinked homopolymers or copolymers insoluble in water. Due to their controllable bio-physicochemical properties mimicking the morphology of the native extracellular matrix, they are a key part of a lot of research fields, including medicine, pharmaceutics, and tissue engineering. This paper was focused on the preparation and characterization of hydrogels from different blends of polyvinyl alcohol (PVA) with microcrystalline cellulose (MCC) and gelatin (GEL) at various ratios, and from gelatin and chitosan alone to understand their feasibility of utilizing as corneal stroma substitutes in permeability tests for drug candidate molecules in early stages of their development. The characterization was carried out by differential scanning calorimetry, electron microscopy (SEM), water content, mass loss, water permeability, wettability, and tensile stress-strain tests. After the physicochemical characterization, PVA/MCC blend and chitosan proved to be the most promising constructs, showing negligible mass loss after immersion in aqueous medium for two weeks and low hydrodynamic permeability. They were then employed in drug molecules permeation studies and these data were compared to that obtained through excised tissues. The results obtained showed that PVA/MCC hydrogels have similar mechanical and permeability properties to corneal stroma
Influence of a Combination of Chemical Enhancers and Iontophoresis on In Vitro Transungual Permeation of Nystatin
To promote transungual permeation of nystatin (NYST), molecule with high molecular weight, no water-soluble, amphoteric by iontophoresis. The synergic effect of the combination of cetylpyridinium chloride, CPC, or polyoxyethylene (20) sorbitan monooleate, TW80, and iontophoresis was investigated. In vitro permeation experiments were carried out through bovine hoof slices using vertical diffusion cells. A low current density (0.2 mA/cm2) was applied by introducing Ag/AgCl electrodes in the donor (anode) and receptor (cathode) chambers. The donor phase consisted of a solution, a suspension, or gel-type vehicles containing NYST and surfactants in pH 5.6 HEPES buffer. The addition of CPC to NYST suspension (SOSP) produced a fivefold increase on the permeability of the bovine hoof membrane to the drug. The application of anodal iontophoresis further improved NYST flux. Conversely, NYST transungual permeation was not influenced by TW80 either in the passive diffusion or iontophoretic flux. Furthermore, the iontophoretic treatment does not appear to induce irreversible alterations to the hoof bovine membranes. The present work demonstrated the efficacy of iontophoresis as a treatment for different nail pathologies with large molecules very slightly soluble in water without irreversibly affecting the nail structure. A synergistic effect between CPC and iontophoresis was observed
Thesaurus: un database per il patrimonio culturale sommerso
Thesaurus Project aims at promoting the knowledge of the underwater cultural heritage, ancient and modern, through the application of several typologies of tools: underwater autonomous vehicles, which will be able to explore the sea bottom in teams communicating with each other; a database, which will be useful to store and manage all the information referring to archaeological or historical objects, shipwrecks and sites. This paper aims to explain the logic structure of the database indicating the particular needs of the research, the different typologies of items which have to be managed (archaeological and historical objects; ancient, medieval or modern shipwrecks; underwater sites; written or figurative sources, etc.), the relation with other similar databases and projects. The main task of this part of Thesaurus is to plan and organize an IT system, which will allow archaeologists to describe information in detail, in order to make an efficient managing and retrieving data system available
Assembling surfactants-mucoadhesive polymer nanomicelles (ASMP-nano) for ocular delivery of cyclosporine-A
The physiological protective mechanisms of the eye reduce the bioavailability of topically administered drugs above all for those with high molecular weight and /or lipophilic characteristics, such as Cyclosporine A (CyA). The combined strategy based on the association of nanomicelles and mucoadhesive polymer seems promising since a limited number of commercial products containing CyA have been recently approved. The scope of this investigation was the design of Assembling Surfactants-Mucoadhesive Polymer Nanomicelles (ASMP-Nano), based on a binary system of two surfactants in combination with hyaluronic acid, and their biopharmaceutical evaluation. The optimisation of the ASMP-Nano in term of the amount of surfactants, CyA-loading and size determined the selection of the clear and stable Nano1HAB-CyA formulation containing 0.105% w/w CyA loaded-nanomicelles with a size of 14.41 nm. The nanostructured system had a protective effect towards epithelial corneal cells with a cell viability of more than 80%. It interacted with cellular barriers favouring the uptake and the accumulation of CyA into the cells as evidenced by fluorescent probe distribution, by hindering CyA permeation through reconstituted corneal epithelial tissue. In pharmacokinetics study on rabbits, the nanomicellar carrier prolonged the CyA retention time in the precorneal area mainly in presence of hyaluronic acid (HA), a mucoadhesive polymer
pH-responsive nanostructures based on surface active fatty acid-protic ionic liquids for imiquimod delivery in skin cancer topical therapy
or topical treatment of skin cancer, the design of pH-responsive nanocarriers able to selectively release the drug in the tumor acidic microenvironment represents a reliable option for targeted delivery. In this context, a series of newly synthesized surface-active fatty acid-protic ionic liquids (FA-PILs), based on tetramethylguanidinium cation and different natural hydrophobic fatty acid carboxylates, have been investigated with the aim of developing a pH-sensitive nanostructured drug delivery system for cutaneous administration in the skin cancer therapy. The capability of FA-PILs to arrange in micelles when combined with each other and with the non-ionic surfactant d-α-Tocopherol polyethylene glycol succinate (vitamin E TPGS) as well as their ability to solubilize imiquimod, an immuno-stimulant drug used for the treatment of skin cancerous lesions, have been demonstrated. The FA-PILs-TPGS mixed micelles showed pH-sensitivity, suggesting that the acidic environment of cancer cells can trigger nanostructures’ swelling and collapse with consequent rapid release of imiquimod and drug cytotoxic potential enhancement. The in vitro permeation/penetration study showed that the micellar formulation produced effective imiquimod concentrations into the skin exposed to acid environment, representing a potential efficacious and selective drug delivery system able to trigger the drug release in the tumor tissues, at lower and less irritating drug concentrations. © 2020 by the author
Tyrosol-Enriched Tomatoes by Diffusion across the Fruit Peel from a Chitosan Coating: A Proposal of Functional Food
Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel. To this end, in vitro permeation tests using excised tomato peel and an in vivo application of chitosan-tyrosol coating on tomato fruit, followed by tyrosol quantification in intact fruit, peel and flesh during a seven-day storage at room temperature, were performed. Both approaches demonstrated the ability of tyrosol to permeate across the fruit peel. Along with a decreased tyrosol content in the peel, its concentration within the flesh was increased, indicating an active transfer of tyrosol into this tissue. This finding, together with the maintenance of constant tyrosol levels during the seven-day storage period, is very promising for the use of chitosan formulations to produce functional tomato fruit
SI-Lab Annual Research Report 2020
The Signal & Images Laboratory (http://si.isti.cnr.it/) is an interdisciplinary research group in computer vision, signal analysis, smart vision systems and multimedia data understanding. It is part of the Institute for Information Science and Technologies of the National Research Council of Italy. This report accounts for the research activities of the Signal and Images Laboratory of the Institute of Information Science and Technologies during the year 2020
- …