2,915 research outputs found
Communication Complexity Protocol for Q-trits
Consider a function where its entries are distributed among many parties.
Suppose each party is allowed to transmit only a limited amount of information
to a net. One can use a classical protocol to guess the value of the global
function. Is there a quantum protocol improving the results of all classical
protocols? Brukner et. al. showed the deep connection between such problems and
the theory of Bell's inequalities. Here we generalize the theory to trits.
There the best classical protocol fails whereas the quantum protocol yields the
correct answer.Comment: 8 page
On Three Generalizations of Contraction
We introduce three forms of generalized contraction (GC). Roughly speaking,
these are motivated by allowing contraction to take place after small
transients in time and/or amplitude. Indeed, contraction is usually used to
prove asymptotic properties, like convergence to an attractor or entrainment to
a periodic excitation, and allowing initial transients does not affect this
asymptotic behavior.
We provide sufficient conditions for GC, and demonstrate their usefulness
using examples of systems that are not contractive, with respect to any norm,
yet are GC
On Measure Concentration of Random Maximum A-Posteriori Perturbations
The maximum a-posteriori (MAP) perturbation framework has emerged as a useful
approach for inference and learning in high dimensional complex models. By
maximizing a randomly perturbed potential function, MAP perturbations generate
unbiased samples from the Gibbs distribution. Unfortunately, the computational
cost of generating so many high-dimensional random variables can be
prohibitive. More efficient algorithms use sequential sampling strategies based
on the expected value of low dimensional MAP perturbations. This paper develops
new measure concentration inequalities that bound the number of samples needed
to estimate such expected values. Applying the general result to MAP
perturbations can yield a more efficient algorithm to approximate sampling from
the Gibbs distribution. The measure concentration result is of general interest
and may be applicable to other areas involving expected estimations
Evidence for a Finite Temperature Insulator
In superconductors the zero-resistance current-flow is protected from
dissipation at finite temperatures (T) by virtue of the short-circuit condition
maintained by the electrons that remain in the condensed state. The recently
suggested finite-T insulator and the "superinsulating" phase are different
because any residual mechanism of conduction will eventually become dominant as
the finite-T insulator sets-in. If the residual conduction is small it may be
possible to observe the transition to these intriguing states. We show that the
conductivity of the high magnetic-field insulator terminating superconductivity
in amorphous indium-oxide exhibits an abrupt drop, and seem to approach a zero
conductance at T<0.04 K. We discuss our results in the light of theories that
lead to a finite-T insulator
Excessive noise as a test for many-body localization
Recent experimental reports suggested the existence of a finite-temperature insulator in the vicinity of the superconductor-insulator transition. The rapid decay of conductivity over a narrow temperature range was theoretically linked to both a finite-temperature transition to a many-body-localized state, and to a charge-Berezinskii-Kosterlitz-Thouless transition. Here we report of low-frequency noise measurements of such insulators to test for many-body localization. We observed a huge enhancement of the low-temperatures noise when exceeding a threshold voltage for nonlinear conductivity and discuss our results in light of the theoretical models
Continuous atom laser with Bose-Einstein condensates involving three-body interactions
We demonstrate, through numerical simulations, the emission of a coherent
continuous matter wave of constant amplitude from a Bose-Einstein Condensate in
a shallow optical dipole trap. The process is achieved by spatial control of
the variations of the scattering length along the trapping axis, including
elastic three body interactions due to dipole interactions. In our approach,
the outcoupling mechanism are atomic interactions and thus, the trap remains
unaltered. We calculate analytically the parameters for the experimental
implementation of this CW atom laser.Comment: 11 pages, 4 figure
- …