37 research outputs found

    Holographic Confining Gauge theory and Response to Electric Field

    Full text link
    We study the response of confining gauge theory to the external electric field by using holographic Yang-Mills theories in the large NcN_c limit. Although the theories are in the confinement phase, we find a transition from the insulator to the conductor phase when the electric field exceeds its critical value. Then, the baryon number current is generated in the conductor phase. At the same time, in this phase, the meson melting is observed through the quasi-normal modes of meson spectrum. Possible ideas are given for the string state corresponding to the melted mesons, and they lead to the idea that the source of this current may be identified with the quarks and anti-quarks supplied by the melted mesons. We also discuss about other possible carriers. Furthermore, from the analysis of the massless quark, chiral symmetry restoration is observed at the insulator-conductor transition point by studying a confining theory in which the chiral symmetry is broken.Comment: 27 pages, 14 figure

    Holographic Approach to Regge Trajectory and Rotating D5 brane

    Full text link
    We study the Regge trajectories of holographic mesons and baryons by considering rotating strings and D5 brane, which is introduced as the baryon vertex. Our model is based on the type IIB superstring theory with the background of asymptotic AdS5×S5AdS_5\times S^5. This background is dual to a confining supersymmetric Yang-Mills theory (SYM) with gauge condensate, , which determines the tension of the linear potential between the quark and anti-quark. Then the slope of the meson trajectory (αM\alpha'_{M}) is given by this condensate as αM=1/π\alpha'_{M}=1/\sqrt{\pi } at large spin JJ. This relation is compatible with the other theoretical results and experiments. For the baryon, we show the importance of spinning baryon vertex to obtain a Regge slope compatible with the one of NN and Δ\Delta series. In both cases, mesons and baryons, the trajectories are shifted to large mass side with the same slope for increasing current quark mass.Comment: 28 pages, 7 figure

    Holographic Penta and Hepta Quark State in Confining Gauge Theories

    Full text link
    We study a new embedding solutions of D5 brane in an asymptotic AdS5×S5{}_5\times S^5 space-time, which is dual to a confining SU(Nc)SU(N_c) gauge theory. The D5 brane is wrapped on S5S^5 as in the case of the vertex of holographic baryon. However, the solution given here is different from the usual baryon vertex in the point that it couples to kk-anti-quarks and Nc+kN_c+k quarks on the opposite two points of S5S^5, the north and south poles, respectively. The total quark number of this state is preserved as NcN_c when minus one is assigned to anti-quark, then it forms a color singlet like the baryon. However, this includes anti-quarks and quarks, whose number is larger than that of the baryon. When we set as Nc=3N_c=3, we find the so called penta and hepta-quark states. We study the dynamical properties of these states by solving the vertex and string configurations for such states. The mass spectra of these states and the tension of the stretched vertex are estimated, and they are compared with that of the baryon.Comment: 24 pages, 6 figure

    Holographic Glueballs and Infrared Wall Driven by Dilaton

    Full text link
    We study glueballs in the holographic gauge theories, supersymmetric and non-super symmetric cases, which are given by the type IIB superstring solutions with non-trivial dilaton. In both cases, the dilaton reflects the condensate of the gauge field strength, , which is responsible to the linear confining potential between the quark and anti-quark. Then we could see the meson spectra. On the other hand, the glueball spectra are not found in the supersymmetric case. We need a sharp wall, which corresponds to an infrared cutoff, in order to obtain the glueballs. In the non-supersymmetric case, the quantized glueballs are actually observed due to the existence of such a wall driven by the dilaton. The strings and D-branes introduced as building blocks of hadrons are pushed out by this wall, and we could see the Regge behavior of the higher spin meson and glueball states. We find that the slope of the glueball trajectory is half of the flavor meson's one. As for the low spin glueballs, they are studied by solving the fluctuations of the bulk fields, and their discrete spectra are shown.Comment: 35 pages, 6 figure

    Roles of the DYRK Kinase Pom2 in Cytokinesis, Mitochondrial Morphology, and Sporulation in Fission Yeast

    Get PDF
    Pom2 is predicted to be a dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) related to Pom1 in Schizosaccharomyces pombe. DYRKs share a kinase domain capable of catalyzing autophosphorylation on tyrosine and exogenous phosphorylation on serine/threonine residues. Here we show that Pom2 is functionally different from the well-characterized Pom1, although they share 55% identity in the kinase domain and the Pom2 kinase domain functionally complements that of Pom1. Pom2 localizes to mitochondria throughout the cell cycle and to the contractile ring during late stages of cytokinesis. Overexpression but not deletion of pom2 results in severe defects in cytokinesis, indicating that Pom2 might share an overlapping function with other proteins in regulating cytokinesis. Gain and loss of function analyses reveal that Pom2 is required for maintaining mitochondrial morphology independently of microtubules. Intriguingly, most meiotic pom2Δ cells form aberrant asci with meiotic and/or forespore membrane formation defects. Taken together, Pom2 is a novel DYRK kinase involved in regulating cytokinesis, mitochondrial morphology, meiosis, and sporulation in fission yeast
    corecore