203 research outputs found

    Microwave Induced Instability Observed in BSCCO 2212 in a Static Magnetic Field

    Full text link
    We have measured the microwave dissipation at 10 GHz through the imaginary part of the susceptibility, χ"\chi^", in a BSCCO 2212 single crystal in an external static magnetic field HH parallel to the c-axis at various fixed temperatures. The characteristics of χ"(H)\chi^"(H) exhibit a sharp step at a field HstepH_{step} which strongly depends on the amplitude of the microwave excitation hach_{ac}. The characteristics of hach_{ac} vs. HstepH_{step}, qualitatively reveal the behavior expected for the magnetic field dependence of Josephson coupling.Comment: 4 pages, 3 Postscript figure

    Two-gap superconductivity in single crystal Lu2_2Fe3_3Si5_5 from penetration depth measurements

    Full text link
    Single crystal of Lu2_2Fe3_3Si5_5 was studied with the tunnel-diode resonator technique in Meissner and mixed states. Temperature dependence of the superfluid density provides strong evidence for the two-gap superconductivity with almost equal contributions from each gap of magnitudes Δ1/kBTc=1.86\Delta_1/k_BT_c=1.86 and Δ1/kBTc=0.54\Delta_1/k_BT_c=0.54. In the vortex state, pinning strength shows unusually strong temperature dependence and is non-monotonic with the magnetic field (peak effect). The irreversibility line is sharply defined and is quite distant from the Hc2(T)H_{c2}(T), which hints on to enhanced vortex fluctuations in this two-gap system. Altogether our findings provide strong electromagnetic - measurements support to the two-gap superconductivity in Lu2_2Fe3_3Si5_5 previously suggested from specific heat measurements

    Specific heat evidence for two-gap superconductivity in ternary-iron silicide Lu2_{2}Fe3_{3}Si5_{5}

    Full text link
    We report low-temperature specific heat studies on single-crystalline ternary-iron silicide superconductor Lu2_{2}Fe3_{3}Si5_{5} withTcT_c = 6.1 K down to Tc/20\sim T_c/20. We confirm a reduced normalized jump in specific heat at TcT_c, and find that the specific heat divided by temperature C/TC/T shows sudden drop at Tc/5\sim T_c/5 and goes to zero with further decreasing temperature. These results indicate the presence of two distinct superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}, similar to a typical two-gap superconductor MgB2_{2}. We also report Hall coefficients, band structure calculation, and the anisotropy of upper critical fields for Lu2_{2}Fe3_{3}Si5_{5}, which support the anisotropic multiband nature and reinforce the existence of two superconducting gaps in Lu2_{2}Fe3_{3}Si5_{5}.Comment: 5 pages, 5 figure

    Multivalued memory effects in electronic phase-change manganites controlled by Joule heating

    Full text link
    Non-volatile multivalued memory effects caused by magnetic fields, currents, and voltage pulses are studied in Nd_{0.65}Ca_{0.35}MnO_3 and (Nd_{1-y}Sm_{y})_{0.5}Sr_{0.5}MnO_3 (y=0.75) single crystals in the hysteretic region between ferromagnetic metallic and charge-ordered insulating states. The current/voltage effects observed in this study are explained by the self-heating effect, which enable us to control the colossal electroresistance effects. This thermal-cycle induced switching between electronic solid and liquid states can be regarded as electronic version of atomic crystal/amorphous transitions in phase-change chalcogenides.Comment: 5 pages, 4 figures. to appear in Phys. Rev.

    Two-band superconductivity featuring different anisotropies in the ternary iron silicide Lu2_{2}Fe3_{3}Si5_{5}

    Full text link
    We report detailed studies of the upper critical field and low-temperature specific heat in the two-gap superconductor Lu2_{2}Fe3_{3}Si5_{5}. The anisotropy of the upper critical field suggests that the active band is quasi-one-dimensional. Low-temperature specific heat in magnetic fields reveals that the virtual Hc2H_{c2} in the passive band is almost isotropic. These results strongly indicate that the two bands have two different anisotropies, similar to the typical two-gap superconductor MgB2_{2}, and their interplay may be essential to the two-gap superconductivity in Lu2_{2}Fe3_{3}Si5_{5}.Comment: 5 pages, 5 figure

    Equilibrium First-Order Melting and Second-Order Glass Transitions of the Vortex Matter in Bi2_2Sr2_2CaCu2_2O8_8

    Full text link
    The thermodynamic HTH-T phase diagram of Bi2_2Sr2_2CaCu2_2O8_8 was mapped by measuring local \emph{equilibrium} magnetization M(H,T)M(H,T) in presence of vortex `shaking'. Two equally sharp first-order magnetization steps are revealed in a single temperature sweep, manifesting a liquid-solid-liquid sequence. In addition, a second-order glass transition line is revealed by a sharp break in the equilibrium M(T)M(T) slope. The first- and second-order lines intersect at intermediate temperatures, suggesting the existence of four phases: Bragg glass and vortex crystal at low fields, glass and liquid at higher fields.Comment: 5 pages, 4 figures. To be published in Phys. Rev. Let

    Interplay of Anisotropy and Disorder in the Doping-Dependent Melting and Glass Transitions of Vortices in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    We study the oxygen doping dependence of the equilibrium first-order melting and second-order glass transitions of vortices in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. Doping affects both anisotropy and disorder. Anisotropy scaling is shown to collapse the melting lines only where thermal fluctuations are dominant. Yet, in the region where disorder breaks that scaling, the glass lines are still collapsed. A quantitative fit to melting and replica symmetry breaking lines of a 2D Ginzburg-Landau model further reveals that disorder amplitude weakens with doping, but to a lesser degree than thermal fluctuations, enhancing the relative role of disorder.Comment: 4 pages, 4 figure
    corecore