15 research outputs found

    An Oligopeptide Transporter of Mycobacterium tuberculosis Regulates Cytokine Release and Apoptosis of Infected Macrophages

    Get PDF
    Background: The Mycobacterium tuberculosis genome encodes two peptide transporters encoded by Rv3665c-Rv3662c and Rv1280c-Rv1283c. Both belong to the family of ABC transporters containing two nucleotide-binding subunits, two integral membrane proteins and one substrate-binding polypeptide. However, little is known about their functions in M. tuberculosis. Here we report functional characterization of the Rv1280c-Rv1283c-encoded transporter and its substrate-binding polypeptide OppA(MTB). Methodology/Principal Findings: OppA(MTB) was capable of binding the tripeptide glutathione and the nonapeptide bradykinin, indicative of a somewhat broad substrate specificity. Amino acid residues G109, N110, N230, D494 and F496, situated at the interface between domains I and III of OppA, were required for optimal peptide binding. Complementaton of an oppA knockout mutant of M. smegmatis with OppA(MTB) confirmed the role of this transporter in importing glutathione and the importance of the aforesaid amino acid residues in peptide transport. Interestingly, this transporter regulated the ability of M. tuberculosis to lower glutathione levels in infected compared to uninfected macrophages. This ability was partly offset by inactivation of oppD. Concomitantly, inactivation of oppD was associated with lowered levels of methyl glyoxal in infected macrophages and reduced apoptosis-inducing ability of the mutant. The ability to induce the production of the cytokines IL-1 beta, IL-6 and TNF-alpha was also compromised after inactivation of oppD. Conclusions: Taken together, these studies uncover the novel observations that this peptide transporter modulates the innate immune response of macrophages infected with M. tuberculosis

    Computational Analysis of Phosphopeptide Binding to the Polo-Box Domain of the Mitotic Kinase PLK1 Using Molecular Dynamics Simulation

    Get PDF
    The Polo-Like Kinase 1 (PLK1) acts as a central regulator of mitosis and is over-expressed in a wide range of human tumours where high levels of expression correlate with a poor prognosis. PLK1 comprises two structural elements, a kinase domain and a polo-box domain (PBD). The PBD binds phosphorylated substrates to control substrate phosphorylation by the kinase domain. Although the PBD preferentially binds to phosphopeptides, it has a relatively broad sequence specificity in comparison with other phosphopeptide binding domains. We analysed the molecular determinants of recognition by performing molecular dynamics simulations of the PBD with one of its natural substrates, CDC25c. Predicted binding free energies were calculated using a molecular mechanics, Poisson-Boltzmann surface area approach. We calculated the per-residue contributions to the binding free energy change, showing that the phosphothreonine residue and the mainchain account for the vast majority of the interaction energy. This explains the very broad sequence specificity with respect to other sidechain residues. Finally, we considered the key role of bridging water molecules at the binding interface. We employed inhomogeneous fluid solvation theory to consider the free energy of water molecules on the protein surface with respect to bulk water molecules. Such an analysis highlights binding hotspots created by elimination of water molecules from hydrophobic surfaces. It also predicts that a number of water molecules are stabilized by the presence of the charged phosphate group, and that this will have a significant effect on the binding affinity. Our findings suggest a molecular rationale for the promiscuous binding of the PBD and highlight a role for bridging water molecules at the interface. We expect that this method of analysis will be very useful for probing other protein surfaces to identify binding hotspots for natural binding partners and small molecule inhibitors

    Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    Get PDF
    Proteolysis in dairy lactic acid bacteria has been studied in great detail by genetic, biochemical and ultrastructural methods. From these studies the picture emerges that the proteolytic systems of lactococci and lactobacilli are remarkably similar in their components and mode of action. The proteolytic system consists of an extracellularly located serine-proteinase, transport systems specific for di-tripeptides and oligopeptides (> 3 residues), and a multitude of intracellular peptidases. This review describes the properties and regulation of individual components as well as studies that have led to identification of their cellular localization. Targeted mutational techniques developed in recent years have made it possible to investigate the role of individual and combinations of enzymes in vivo. Based on these results as well as in vitro studies of the enzymes and transporters, a model for the proteolytic pathway is proposed. The main features are: (i) proteinases have a broad specificity and are capable of releasing a large number of different oligopeptides, of which a large fraction falls in the range of 4 to 8 amino acid residues; (ii) oligopeptide transport is the main route for nitrogen entry into the cell; (iii) all peptidases are located intracellularly and concerted action of peptidases is required for complete degradation of accumulated peptides.

    Ab-initio phasing of a 4189-atom protein structure at 1.2 Ã… resolution.

    No full text

    Low resolution solution structure of the Apo form of Escherichia coli haemoglobine protease Hbp

    No full text
    We have studied the solution properties of the apo form of the haemoglobin protease or "haemoglobinase", Hbp, a principal component of an important iron acquisition system in pathogenic Escherichia coli. Experimental determination of secondary structure content from circular dichroism (CD) spectroscopy, obtained using synchrotron light, showed that the protein contains predominately β-sheets in agreement with secondary structure prediction from the primary sequence. Next, the size and shape of the protein were probed using analytical ultracentrifugation (AUC) and small angle X-ray scattering (SAXS). These showed that Hbp is a monomer, with an extended conformation. Using ab initio reconstruction methods we have produced a model of Hbp, which shows that the protein adopts an extended crescent-shaped conformation. Analysis of the resulting model gives hydrodynamic parameters in good agreement with those observed experimentally. Thus we are able to construct a hydrodynamically rigorous model of apo-Hbp in solution, not only giving a greater level of confidence to the results of the SAXS reconstruction methods, but providing the first three-dimensional view of this intriguing molecule. © 2002 Elsevier Science Ltd

    Protonation linked equilibria and apparent affinity constants: the thermodynamic profile of the alpha-chymotrypsin-proflavin interaction

    No full text
    Protonation/deprotonation equilibria are frequently linked to binding processes involving proteins. The presence of these thermodynamically linked equilibria affects the observable thermodynamic parameters of the interaction (K(obs), DeltaH(obs)(0) ). In order to try and elucidate the energetic factors that govern these binding processes, a complete thermodynamic characterisation of each intrinsic equilibrium linked to the complexation event is needed and should furthermore be correlated to structural information. We present here a detailed study, using NMR and ITC, of the interaction between alpha-chymotrypsin and one of its competitive inhibitors, proflavin. By performing proflavin titrations of the enzyme, at different pH values, we were able to highlight by NMR the effect of the complexation of the inhibitor on the ionisable residues of the catalytic triad of the enzyme. Using ITC we determined the intrinsic thermodynamic parameters of the different equilibria linked to the binding process. The possible driving forces of the interaction between alpha-chymotrypsin and proflavin are discussed in the light of the experimental data and on the basis of a model of the complex. This study emphasises the complementarities between ITC and NMR for the study of binding processes involving protonation/deprotonation equilibria.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore