1,264 research outputs found
Review: New Initiatives in Agricultural Economics Education at the University of Stellenbosch
Teaching/Communication/Extension/Profession,
NEW INITIATIVES IN AGRICULTURAL ECONOMICS EDUCATION AT THE UNIVERSITY OF THE NORTH
Teaching/Communication/Extension/Profession,
Consistent multiphase-field theory for interface driven multidomain dynamics
We present a new multiphase-field theory for describing pattern formation in
multi-domain and/or multi-component systems. The construction of the free
energy functional and the dynamic equations is based on criteria that ensure
mathematical and physical consistency. We first analyze previous
multiphase-field theories, and identify their advantageous and disadvantageous
features. On the basis of this analysis, we introduce a new way of constructing
the free energy surface, and derive a generalized multiphase description for
arbitrary number of phases (or domains). The presented approach retains the
variational formalism; reduces (or extends) naturally to lower (or higher)
number of fields on the level of both the free energy functional and the
dynamic equations; enables the use of arbitrary pairwise equilibrium
interfacial properties; penalizes multiple junctions increasingly with the
number of phases; ensures non-negative entropy production, and the convergence
of the dynamic solutions to the equilibrium solutions; and avoids the
appearance of spurious phases on binary interfaces. The new approach is tested
for multi-component phase separation and grain coarsening
Particle acceleration at comets
This paper compares calculated and measured energy spectra of implanted H+ and O+ ions on the assumption that the pick‐up geometry is quasi‐parallel and about 1% of the waves generated by the cometary pickup process propagates backward (towards the comet). The model provides a good description of the implanted O+ and H+ energy distribution near the pickup energies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87298/2/267_1.pd
Charge exchange avalanche at the cometopause
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95404/1/grl3768.pd
VEGA: En route to Venus and comet Halley
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95520/1/eost5312.pd
An analytic solution to the steady‐state double adiabatic equations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94665/1/grl5619.pd
Eruptive Event Generator Based on the Gibson-Low Magnetic Configuration
Coronal Mass Ejections (CMEs), a kind of energetic solar eruptions, are an
integral subject of space weather research. Numerical magnetohydrodynamic (MHD)
modeling, which requires powerful computational resources, is one of the
primary means of studying the phenomenon. With increasing accessibility of such
resources, grows the demand for user-friendly tools that would facilitate the
process of simulating CMEs for scientific and operational purposes. The
Eruptive Event Generator based on Gibson-Low flux rope (EEGGL), a new publicly
available computational model presented in this paper, is an effort to meet
this demand. EEGGL allows one to compute the parameters of a model flux rope
driving a CME via an intuitive graphical user interface (GUI). We provide a
brief overview of the physical principles behind EEGGL and its functionality.
Ways towards future improvements of the tool are outlined
- …