107 research outputs found

    Confronting Neutron Star Cooling Theories with New Observations

    Full text link
    With the successful launch of Chandra and XMM/Newton X-ray space missions combined with the lower-energy band observations, we are in the position where careful comparison of neutron star cooling theories with observations will make it possible to distinguish among various competing theories. For instance, the latest theoretical and observational developments already exclude both nucleon and kaon direct URCA cooling. In this way we can now have realistic hope for determining various important properties, such as the composition, degree of superfluidity, the equation of state and steller radius. These developments should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur

    Ab initio approach to s-shell hypernuclei 3H_Lambda, 4H_Lambda, 4He_Lambda and 5He_Lambda with a Lambda N-Sigma N interaction

    Full text link
    Variational calculations for s-shell hypernuclei are performed by explicitly including Σ\Sigma degrees of freedom. Four sets of YN interactions (SC97d(S), SC97e(S), SC97f(S) and SC89(S)) are used. The bound-state solution of Λ5_\Lambda^5He is obtained and a large energy expectation value of the tensor ΛN−ΣN\Lambda N-\Sigma N transition part is found. The internal energy of the 4^4He subsystem is strongly affected by the presence of a Λ\Lambda particle with the strong tensor ΛN−ΣN\Lambda N-\Sigma N transition potential.Comment: Phys. Rev. Lett. 89, 142504 (2002

    Deformations in N=14 isotones

    Full text link
    Systematic analysis of deformations in neutron-rich N=14 isotones was done based on the method of antisymmetrized molecular dynamics. The property of the shape coexistence in 28^{28}Si, which is known to have the oblate ground state and the prolate excited states, was successfully described. The results suggest that the shape coexistence may occur also in neutron-rich N=14 nuclei as well as 28^{28}Si. It was found that the oblate neutron shapes are favored because of the spin-orbit force in most of N=14 isotones. QQ moments and E2E2 transition strengths in the neutron-rich nuclei were discussed in relation to the intrinsic deformations, and a possible difference between the proton and neutron deformations in 24^{24}Ne was proposed.Comment: 13 pages, 7 figures, sumitted to Phys.Rev.

    Semisynthetic Nanoreactor for Reversible Single-Molecule Covalent Chemistry

    Get PDF
    Protein engineering has been used to remodel pores for applications in biotechnology. For example, the heptameric alpha-hemolysin pore (alpha HL) has been engineered to form a nanoreactor to study covalent chemistry at the single -molecule level. Previous work has been confined largely to the chemistry of cysteine side chains or, in one instance, to an irreversible reaction of an unnatural amino acid side chain bearing a terminal alkyne. Here, we present four different alpha HL pores obtained by coupling either two or three fragments by native chemical ligation (NCL). The synthetic alpha HL monomers were folded and incorporated into heptameric pores. The functionality of the pores was validated by hemolysis assays and by single-channel current recording. By using NCL to introduce a ketone amino acid, the nanoreactor approach was extended to an investigation of reversible covalent chemistry on an unnatural side chain at the single -molecule level

    Dilute Multi Alpha Cluster States in Nuclei

    Full text link
    Dilute multi α\alpha cluster condensed states with spherical and axially deformed shapes are studied with the Gross-Pitaevskii equation and Hill-Wheeler equation, where the α\alpha cluster is treated as a structureless boson. Applications to self-conjugate 4N4N nuclei show that the dilute NαN\alpha states of 12^{12}C to 40^{40}Ca with Jπ=0+J^\pi=0^+ appear in the energy region from threshold up to about 20 MeV, and the critical number of α\alpha bosons that the dilute NαN\alpha system can sustain as a self-bound nucleus is estimated roughly to be Ncr∌10N_{cr}\sim10. We discuss the characteristics of the dilute NαN\alpha states with emphasis on the NN dependence of their energies and rms radii.Comment: 44 pages, 8 figure

    Nucleon-nucleon interactions via Lattice QCD: Methodology --HAL QCD approach to extract hadronic interactions in lattice QCD--

    Full text link
    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for the nucleon-nucleon potentials.Comment: 12 pages, 10 figure

    Levinson's Theorem for Non-local Interactions in Two Dimensions

    Full text link
    In the light of the Sturm-Liouville theorem, the Levinson theorem for the Schr\"{o}dinger equation with both local and non-local cylindrically symmetric potentials is studied. It is proved that the two-dimensional Levinson theorem holds for the case with both local and non-local cylindrically symmetric cutoff potentials, which is not necessarily separable. In addition, the problems related to the positive-energy bound states and the physically redundant state are also discussed in this paper.Comment: Latex 11 pages, no figure, submitted to J. Phys. A Email: [email protected], [email protected]

    Structure of Excited States of 10Be studied with Antisymmetrized Molecular Dynamics

    Get PDF
    We study structure of excited states of 10Be with the method of variation after spin parity projection in the framework of antisymmetrized molecular dynamics. Present calculations describe many excited states and reproduce the experimental data of E2 and E1 transitions and the new data of the ÎČ\beta transition strength successfully. We make systematic discussions on the molecule-like structures of light unstable nuclei and the important role of the valence neutrons based on the results obtained with the framework which is free from such model assumptions as the existence of inert cores and clusters.Comment: 15 pages, RevTex, seven postscript figures (using epsf.sty

    The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model

    Get PDF
    We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks. The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly dominant configuration is ∣s4p2[42]O[51]FS>\mid s^4p^2[42]_O [51]_{FS}> due to its specific flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a strong effective repulsion at zero separation between nucleons in both 3S1^3S_1 and 1S0^1S_0 channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function at short range will be however strongly suppressed. We discuss the mechanism leading to the effective short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon exchange interaction.Comment: 31 pages, LaTe

    2α+t2\alpha+t cluster structure in 11^{11}B

    Full text link
    The cluster structures of the excited states in 11^{11}B are studied by analyzing the isoscalar monopole and quadrupole strengths in the 11^{11}B(dd,dâ€Čd') reaction at Ed=200E_d=200 MeV. The excitation strengths are compared with the predictions by the shell-model and antisymmetrized molecular-dynamics (AMD) calculations. It is found that the large monopole strength for the 3/23−3/2^-_3 state at Ex=8.56E_x=8.56 MeV is well described by the AMD calculation and is an evidence for a developed 2α+t2\alpha+t cluster structure.Comment: Revised according to the referees' comment
    • 

    corecore