34 research outputs found

    Professor Stefan Hohmann (08.09.1956-02.07.2021)

    Get PDF

    Effects of the toxic metals arsenite and cadmium on α-synuclein aggregation in vitro and in cells

    Get PDF
    Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson’s disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson’s disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson’s disease

    Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity

    Get PDF
    The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper

    Evolutionary Forces Act on Promoter Length: Identification of Enriched Cis-Regulatory Elements

    No full text
    Transcription factors govern gene expression by binding to short DNA sequences called cis-regulatory elements. These sequences are typically located in promoters, which are regions of variable length upstream of the open reading frames of genes. Here, we report that promoter length and gene function are related in yeast, fungi, and plants. In particular, the promoters for stress-responsive genes are in general longer than those of other genes. Essential genes have, on the other hand, relatively short promoters. We utilize these findings in a novel method for identifying relevant cis-regulatory elements in a set of coexpressed genes. The method is shown to generate more accurate results and fewer false positives compared with other common procedures. Our results suggest that genes with complex transcriptional regulation tend to have longer promoters than genes responding to few signals. This phenomenon is present in all investigated species, indicating that evolution adjust promoter length according to gene function. Identification of cis-regulatory elements in Saccharomyces cerevisiae can be done with the web service located at http://enricher.zool.gu.se

    Evolutionary Forces Act on Promoter Length: Identification of Enriched Cis-Regulatory Elements

    No full text
    Transcription factors govern gene expression by binding to short DNA sequences called cis-regulatory elements. These sequences are typically located in promoters, which are regions of variable length upstream of the open reading frames of genes. Here, we report that promoter length and gene function are related in yeast, fungi, and plants. In particular, the promoters for stress-responsive genes are in general longer than those of other genes. Essential genes have, on the other hand, relatively short promoters. We utilize these findings in a novel method for identifying relevant cis-regulatory elements in a set of coexpressed genes. The method is shown to generate more accurate results and fewer false positives compared with other common procedures. Our results suggest that genes with complex transcriptional regulation tend to have longer promoters than genes responding to few signals. This phenomenon is present in all investigated species, indicating that evolution adjust promoter length according to gene function. Identification of cis-regulatory elements in Saccharomyces cerevisiae can be done with the web service located at http://enricher.zool.gu.se
    corecore