1,475 research outputs found

    Low-Reynolds number swimming in gels

    Full text link
    Many microorganisms swim through gels, materials with nonzero zero-frequency elastic shear modulus, such as mucus. Biological gels are typically heterogeneous, containing both a structural scaffold (network) and a fluid solvent. We analyze the swimming of an infinite sheet undergoing transverse traveling wave deformations in the "two-fluid" model of a gel, which treats the network and solvent as two coupled elastic and viscous continuum phases. We show that geometric nonlinearities must be incorporated to obtain physically meaningful results. We identify a transition between regimes where the network deforms to follow solvent flows and where the network is stationary. Swimming speeds can be enhanced relative to Newtonian fluids when the network is stationary. Compressibility effects can also enhance swimming velocities. Finally, microscopic details of sheet-network interactions influence the boundary conditions between the sheet and network. The nature of these boundary conditions significantly impacts swimming speeds.Comment: 6 pages, 5 figures, submitted to EP

    Crescentic ramp turbine stage

    Get PDF
    A turbine stage includes a row of airfoils joined to corresponding platforms to define flow passages therebetween. Each airfoil includes opposite pressure and suction sides and extends in chord between opposite leading and trailing edges. Each platform includes a crescentic ramp increasing in height from the leading and trailing edges toward the midchord of the airfoil along the pressure side thereof

    Beating patterns of filaments in viscoelastic fluids

    Full text link
    Many swimming microorganisms, such as bacteria and sperm, use flexible flagella to move through viscoelastic media in their natural environments. In this paper we address the effects a viscoelastic fluid has on the motion and beating patterns of elastic filaments. We treat both a passive filament which is actuated at one end, and an active filament with bending forces arising from internal motors distributed along its length. We describe how viscoelasticity modifies the hydrodynamic forces exerted on the filaments, and how these modified forces affect the beating patterns. We show how high viscosity of purely viscous or viscoelastic solutions can lead to the experimentally observed beating patterns of sperm flagella, in which motion is concentrated at the distal end of the flagella

    miR-7 Controls the Dopaminergic/Oligodendroglial Fate through Wnt/\u3b2-catenin Signaling Regulation

    Get PDF
    During the development of the central nervous system, the proliferation of neural progenitors and differentiation of neurons and glia are tightly regulated by different transcription factors and signaling cascades, such as the Wnt and Shh pathways. This process takes place in cooperation with several microRNAs, some of which evolutionarily conserved in vertebrates, from teleosts to mammals. We focused our attention on miR-7, as its role in the regulation of cell signaling during neural development is still unclear. Specifically, we used human stem cell cultures and whole zebrafish embryos to study, in vitro and in vivo, the role of miR-7 in the development of dopaminergic (DA) neurons, a cell type primarily affected in Parkinson's disease. We demonstrated that the zebrafish homologue of miR-7 (miR-7a) is expressed in the forebrain during the development of DA neurons. Moreover, we identified 143 target genes downregulated by miR-7, including the neural fate markers TCF4 and TCF12, as well as the Wnt pathway effector TCF7L2. We then demonstrated that miR-7 negatively regulates the proliferation of DA-progenitors by inhibiting Wnt/\u3b2-catenin signaling in zebrafish embryos. In parallel, miR-7 positively regulates Shh signaling, thus controlling the balance between oligodendroglial and DA neuronal cell fates. In summary, this study identifies a new molecular cross-talk between Wnt and Shh signaling pathways during the development of DA-neurons. Being mediated by a microRNA, this mechanism represents a promising target in cell differentiation therapies for Parkinson's disease

    The development of memory maintenance strategies:Training cumulative rehearsal and interactive imagery in children aged between 5 and 9

    Get PDF
    The current study explored the extent to which children above and below the age of 7 years are able to benefit from either training in cumulative rehearsal or in the use of interactive imagery when carrying out working memory tasks. Twenty-four 5- to 6-year-olds and 24 8- to 9-year olds were each assigned to one of three training groups who either received cumulative rehearsal, interactive imagery, or passive labelling training. Participants’ ability to maintain material during a filled delay was then assessed, and the nature of the distraction that was imposed during this delay was varied to shed further light on the mechanisms that individuals used to maintain the memoranda in working memory in the face of this distraction. The results suggest that the rehearsal training employed here did improve recall by virtue of encouraging rehearsal strategies, in a way that was not observed among participants receiving interactive imagery training. The fact that these effects were not mediated by age group counts against the view that younger individuals are either unable to rehearse, or show impoverished verbal serial recall because they do not spontaneously engage in rehearsal

    Bench to Bedside Development of [18F]Fluoromethyl-(1,2-2H4)choline ([18F]D4-FCH)

    Get PDF
    malignant transformation is characterised by aberrant phospholipid metabolism of cancers, associated with the upregulation of choline kinase alpha (CHK alpha). due to the metabolic instability of choline radiotracers and the increasing use of late-imaging protocols, we developed a more stable choline radiotracer, [F-18]fluoromethyl-[1,2-H-2(4)]choline ([F-18]D4-FCH). [F-18]D4-FCH has improved protection against choline oxidase, the key choline catabolic enzyme, via a H-1/D-2 isotope effect, together with fluorine substitution. Due to the promising mechanistic and safety profiles of [F-18]D4-FCH in vitro and preclinically, the radiotracer has transitioned to clinical development. [F-18]D4-FCH is a safe positron emission tomography (PET) tracer, with a favourable radiation dosimetry profile for clinical imaging. [F-18]D4-FCH PET/CT in lung and prostate cancers has shown highly heterogeneous intratumoral distribution and large lesion variability. treatment with abiraterone or enzalutamide in metastatic castrate-resistant prostate cancer patients elicited mixed responses on PET at 12-16 weeks despite predominantly stable radiological appearances. the sum of the weighted tumour-to-background ratios (TBRs-wsum) was associated with the duration of survival

    Real-time non-invasive measurement and monitoring of wheel-rail contact using ultrasonic reflectometry

    Get PDF
    Rail stress levels are vital to the lifespan of rail tracks, and are responsible for the safe operation and ride comfort of train services. In particular, wheel–rail contact stress is a dominating factor affecting wear, cracking, fatigue and failure of both wheel and rail. The wheel–rail interaction problem has long been investigated, yet detailed contact information on real cases remains obscure due to the interface complexity, including the varying wheel and rail profiles and lack of effective stress characterisation methods. Ultrasound image study, as an excellent non-destructive evaluation (NDE) method, is widely used in railway systems for defect detection, stress determination and rail profile checking. Specifically, ultrasonic reflectometry has proved successful in making static machine-element contact measurements. This article introduces a novel measuring method for both short-term and long-term dynamic wheel–rail contact monitoring purposes based on ultrasonic reflectometry. The method is investigated in detail, including the study of ultrasound propagation pathways in the rail, and the optimum placement of ultrasonic elements as well as actuator–receiver combinations. The proposed monitoring technique is expected to characterise and monitor the contact behaviour of operating high-speed rail system in real-time
    • …
    corecore