193 research outputs found

    The Performance of MLEM for Dynamic Imaging From Simulated Few-View, Multi-Pinhole SPECT

    Get PDF
    Stationary small-animal SPECT systems are being developed for rapid dynamic imaging from limited angular views. This work quantified, through simulations, the performance of Maximum Likelihood Expectation Maximization (MLEM) for reconstructing a time-activity curve (TAC) with uptake duration of a few seconds from a stationary, three-camera multi-pinhole SPECT system. The study also quantified the benefits of a heuristic method of initializing the reconstruction with a prior image reconstructed from a conventional number of views, for example from data acquired during the late-study portion of the dynamic TAC. We refer to MLEM reconstruction initialized by a prior-image initial guess (IG) as MLEMig. The effect of the prior-image initial guess on the depiction of contrast between two regions of a static phantom was quantified over a range of angular sampling schemes. A TAC was modeled from the experimentally measured uptake of 99mTc-hexamethylpropyleneamine oxime (HMPAO) in the rat lung. The resulting time series of simulated images was quantitatively analyzed with respect to the accuracy of the estimated exponential washin and washout parameters. In both static and dynamic phantom studies, the prior-image initial guess improved the spatial depiction of the phantom, for example improved definition of the cylinder boundaries and more accurate quantification of relative contrast between cylinders. For example in the dynamic study, there was ~ 50% error in relative contrast for MLEM reconstructions compared to ~ 25-30% error for MLEMig. In the static phantom study, the benefits of the initial guess decreased as the number of views increased. The prior-image initial guess introduced an additive offset in the reconstructed dynamic images, likely due to biases introduced by the prior image. MLEM initialized with a uniform initial guess yielded images that faithfully reproduced the time dependence of the simulated TAC; there were no s- atistically significant differences in the mean exponential washin/washout parameters estimated from MLEM reconstructions compared to the true values. Washout parameters estimated from MLEMig reconstructions did not differ significantly from the true values, however the estimated washin parameter differed significantly from the true value in some cases. Overall, MLEM reconstruction from few views and a uniform initial guess accurately quantified the time dependance of the TAC while introducing errors in the spatial depiction of the object. Initializing the reconstruction with a late-study initial guess improved spatial accuracy while decreasing temporal accuracy in some cases

    Direct characterization of circulating DNA in blood plasma using μLAS technology

    Get PDF
    Circulating cell-free DNA (cfDNA) is a powerful cancer biomarker for establishing targeted therapies or monitoring patients' treatment. However, current cfDNA characterization is severely limited by its low concentration, requiring the extensive use of amplification techniques. Here we report that the μLAS technology allows us to quantitatively characterize the size distribution of purified cfDNA in a few minutes, even when its concentration is as low as 1 pg/μL. Moreover, we show that DNA profiles can be directly measured in blood plasma with a minimal conditioning process to speed up considerably speed up the cfDNA analytical chain

    10 simple rules to create a serious game, illustrated with examples from structural biology

    Full text link
    Serious scientific games are games whose purpose is not only fun. In the field of science, the serious goals include crucial activities for scientists: outreach, teaching and research. The number of serious games is increasing rapidly, in particular citizen science games, games that allow people to produce and/or analyze scientific data. Interestingly, it is possible to build a set of rules providing a guideline to create or improve serious games. We present arguments gathered from our own experience ( Phylo , DocMolecules , HiRE-RNA contest and Pangu) as well as examples from the growing literature on scientific serious games

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    Technical Aspects for the Evaluation of Circulating Nucleic Acids (CNAs): Circulating Tumor DNA (ctDNA) and Circulating MicroRNAs

    Get PDF
    Circulating nucleic acids (CNAs), for example, circulating tumor DNA (ctDNA) and circulating microRNA (miRNA), represent promising biomarkers in several diseases including cancer. They can be isolated from many body fluids, such as blood, saliva, and urine. Also ascites, cerebrospinal fluids, and pleural effusion may be considered as a source of CNAs, but with several and intrinsic limitations. Therefore, blood withdrawal represents one of the best sources for CNAs due to the very simple and minimally invasive way of sampling. Moreover, it can be repeated at different time points, giving the opportunity for a real-time monitoring of the disease

    Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor

    Get PDF
    Cholesterol influences ion-channel function, distribution and clustering in the membrane, endocytosis, and exocytic sorting of the nicotinic acetylcholine receptor (AChR). We report the occurrence of a cholesterol recognition motif, here coined “CARC”, in the transmembrane regions of AChR subunits that bear extensive contact with the surrounding lipid, and are thus optimally suited to convey cholesterol-mediated signaling from the latter. Three cholesterol molecules could be docked on the transmembrane segments of each AChR subunit, rendering a total of 15 cholesterol molecules per AChR molecule. The CARC motifs contribute each with an energy of interaction between 35 and 52 kJ.mol−1, adding up to a total of about 200 kJ.mol−1 per receptor molecule, i.e. ∼40% of the lipid solvation free energy/ AChR molecule. The CARC motif is remarkably conserved along the phylogenetic scale, from prokaryotes to human, suggesting that it could be responsible for some of the above structural/functional properties of the AChR

    Characterizing Ligand-Gated Ion Channel Receptors with Genetically Encoded Ca++ Sensors

    Get PDF
    We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC) by developing sensor cells stably expressing a Ca2+ permeable LGIC and a genetically encoded Förster (or fluorescence) resonance energy transfer (FRET)-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT3A serotonin receptors and a chimera of human α7/mouse 5-HT3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters

    Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine

    Get PDF
    ELIC, the pentameric ligand-gated ion channel from Erwinia chrysanthemi, is a prototype for Cys-loop receptors. Here we show that acetylcholine is a competitive antagonist for ELIC. We determine the acetylcholine–ELIC cocrystal structure to a 2.9-Å resolution and find that acetylcholine binding to an aromatic cage at the subunit interface induces a significant contraction of loop C and other structural rearrangements in the extracellular domain. The side chain of the pore-lining residue F247 reorients and the pore size consequently enlarges, but the channel remains closed. We attribute the inability of acetylcholine to activate ELIC primarily to weak cation-π and electrostatic interactions in the pocket, because an acetylcholine derivative with a simple quaternary-to-tertiary ammonium substitution activates the channel. This study presents a compelling case for understanding the structural underpinning of the functional relationship between agonism and competitive antagonism in the Cys-loop receptors, providing a new framework for developing novel therapeutic drugs

    Direction and magnitude of nicotine effects on the fMRI BOLD response are related to nicotine effects on behavioral performance

    Get PDF
    Considerable variability across individuals has been reported in both the behavioral and fMRI blood oxygen level-dependent (BOLD) response to nicotine. We aimed to investigate (1) whether there is a heterogeneous effect of nicotine on behavioral and BOLD responses across participants and (2) if heterogeneous BOLD responses are associated with behavioral performance measures. In this double-blind, placebo-controlled, cross-over study, 41 healthy participants (19 smokers)—drawn from a larger population-based sample—performed a visual oddball task after acute challenge with 1 mg nasal nicotine. fMRI data and reaction time were recorded during performance of the task. Across the entire group of subjects, we found increased activation in the anterior cingulate cortex, middle frontal gyrus, superior temporal gyrus, post-central gyrus, planum temporal and frontal pole in the nicotine condition compared with the placebo condition. However, follow-up analyses of this difference in activation between the placebo and nicotine conditions revealed that some participants showed an increase in activation while others showed a decrease in BOLD activation from the placebo to the nicotine condition. A reduction of BOLD activation from placebo to nicotine was associated with a decrease in reaction time and reaction time variability and vice versa, suggesting that it is the direction of BOLD response to nicotine which is related to task performance. We conclude that the BOLD response to nicotine is heterogeneous and that the direction of response to nicotine should be taken into account in future pharmaco-fMRI research on the central action of nicotine
    corecore