42 research outputs found
Neonatal Colonisation Expands a Specific Intestinal Antigen-Presenting Cell Subset Prior to CD4 T-Cell Expansion, without Altering T-Cell Repertoire
Interactions between the early-life colonising intestinal microbiota and the developing immune system are critical in determining the nature of immune responses in later life. Studies in neonatal animals in which this interaction can be examined are central to understanding the mechanisms by which the microbiota impacts on immune development and to developing therapies based on manipulation of the microbiome. The inbred piglet model represents a system that is comparable to human neonates and allows for control of the impact of maternal factors. Here we show that colonisation with a defined microbiota produces expansion of mucosal plasma cells and of T-lymphocytes without altering the repertoire of alpha beta T-cells in the intestine. Importantly, this is preceded by microbially-induced expansion of a signal regulatory protein α-positive (SIRPα+) antigen-presenting cell subset, whilst SIRPα−CD11R1+ antigen-presenting cells (APCs) are unaffected by colonisation. The central role of intestinal APCs in the induction and maintenance of mucosal immunity implicates SIRPα+ antigen-presenting cells as orchestrators of early-life mucosal immune development
Immunological mechanisms underpinning faecal microbiota transplantation for the treatment of inflammatory bowel disease.
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease that results from a dysregulated immune response against specific environmental triggers in a genetically predisposed individual. Increasing evidence has indicated a causal role for changes in gut microbiota (dysbiosis) contributing to this immune-mediated intestinal inflammation. These mechanisms involve dysregulation of multiple facets of the host immune pathways that are potentially reversible. Faecal microbiota transplantation (FMT) is the transfer of processed stool from a healthy donor into an individual with an illness. FMT has shown promising results in both animal model experiments and clinical studies in IBD in the resolution of intestinal inflammation. The underlying mechanisms, however, are unclear. Insights from these studies have shown interactions between modulation of dysbiosis via changes in abundances of specific members of the gut microbial community and changes in host immunological pathways. Unravelling these causal relationships has promising potential for a translational therapy role to develop targeted microbial therapies and understand the mechanisms that underpin IBD aetiopathogenesis. In this review, we discuss current evidence for the contribution of gut microbiota in the disruption of intestinal immune homeostasis and immunoregulatory mechanisms that are associated with the resolution of inflammation through FMT in IBD