6 research outputs found

    NIR-Light-Driven Generation of Reactive Oxygen Species Using Ru(II)-Decorated Lipid-Encapsulated Upconverting Nanoparticles

    No full text
    The biological application of ruthenium anticancer prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) is restricted by the need to use poorly penetrating high-energy photons for their activation, i.e., typically blue or green light. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, may solve this issue, provided that the coupling between the UCNP surface and the Ru prodrug is optimized to produce stable nanoconjugates with efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the two structurally related ruthenium(II) polypyridyl complexes [Ru(bpy)2(5)](PF6)2 ([1](PF6)2) and [Ru(bpy)2(6)](PF6)2 ([2](PF6)2), where bpy = 2,2-bipyridine, 5 is 5,6-bis(dodecyloxy)-2,9-dimethyl-1,10-phenanthroline, and 6 is 5,6-bis(dodecyloxy)-1,10-phenanthroline. [1](PF6)2 is photolabile as a result of the steric strain induced by ligand 5, but the irradiation of [1](PF6)2 in solution leads to the nonselective and slow photosubstitution of one of its three ligands, making it a poor PACT compound. On the other hand, [2](PF6)2 is an efficient and photostable PDT photosensitizer. The water-dispersible, negatively charged nanoconjugate UCNP@lipid/[2] was prepared by the encapsulation of 44 nm diameter NaYF4:Yb3+,Tm3+ UCNPs in a mixture of 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycero-3-phosphocholine phospholipids, cholesterol, and the amphiphilic complex [2](PF6)2. A nonradiative energy transfer efficiency of 12% between the Tm3+ ions in the UCNP and the Ru2+ acceptor [2]2+ was found using time-resolved emission spectroscopy. Under irradiation with NIR light (969 nm), UCNP@lipid/[2] was found to produce reactive oxygen species (ROS), as judged by the oxidation of the nonspecific ROS probe 2′,7′-dichlorodihydrofluorescein (DCFH2–). Determination of the type of ROS produced was precluded by the negative surface charge of the nanoconjugate, which resulted in the electrostatic repulsion of the more specific but also negatively charged 1O2 probe tetrasodium 9,10-anthracenediyl-bis(methylene)dimalonate (Na4(ADMBMA))

    NIR-Light-Driven Generation of Reactive Oxygen Species Using Ru(II)-Decorated Lipid-Encapsulated Upconverting Nanoparticles

    Get PDF
    The biological application of ruthenium anticancer prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) is restricted by the need to use poorly penetrating high-energy photons for their activation, i.e., typically blue or green light. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, may solve this issue, provided that the coupling between the UCNP surface and the Ru prodrug is optimized to produce stable nanoconjugates with efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the two structurally related ruthenium(II) polypyridyl complexes [Ru(bpy)2( 5 )](PF6)2 ([ 1 ](PF6)2) and [Ru(bpy)2( 6 )](PF6)2 ([ 2 ](PF6)2), where bpy = 2,2-bipyridine, 5 is 5,6-bis(dodecyloxy)-2,9-dimethyl-1,10-phenanthroline, and 6 is 5,6-bis(dodecyloxy)-1,10-phenanthroline. [ 1 ](PF6)2 is photolabile as a result of the steric strain induced by ligand 5 , but the irradiation of [ 1 ](PF6)2 in solution leads to the nonselective and slow photosubstitution of one of its three ligands, making it a poor PACT compound. On the other hand, [ 2 ](PF6)2 is an efficient and photostable PDT photosensitizer. The water-dispersible, negatively charged nanoconjugate UCNP@lipid/[ 2 ] was prepared by the encapsulation of 44 nm diameter NaYF4:Yb3+,Tm3+ UCNPs in a mixture of 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycero-3-phosphocholine phospholipids, cholesterol, and the amphiphilic complex [ 2 ](PF6)2. A nonradiative energy transfer efficiency of 12% between the Tm3+ ions in the UCNP and the Ru2+ acceptor [ 2 ]2+ was found using time-resolved emission spectroscopy. Under irradiation with NIR light (969 nm), UCNP@lipid/[ 2 ] was found to produce reactive oxygen species (ROS), as judged by the oxidation of the nonspecific ROS probe 2′,7′-dichlorodihydrofluorescein (DCFH2–). Determination of the type of ROS produced was precluded by the negative surface charge of the nanoconjugate, which resulted in the electrostatic repulsion of the more specific but also negatively charged 1O2 probe tetrasodium 9,10-anthracenediyl-bis(methylene)dimalonate (Na4(ADMBMA))

    NIR-Light-Driven Generation of Reactive Oxygen Species Using Ru(II)-Decorated Lipid-Encapsulated Upconverting Nanoparticles

    No full text
    The biological application of ruthenium anticancer prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) is restricted by the need to use poorly penetrating high-energy photons for their activation, i.e., typically blue or green light. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, may solve this issue, provided that the coupling between the UCNP surface and the Ru prodrug is optimized to produce stable nanoconjugates with efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the two structurally related ruthenium(II) polypyridyl complexes [Ru(bpy)2(5)](PF6)2 ([1](PF6)2) and [Ru(bpy)2(6)](PF6)2 ([2](PF6)2), where bpy = 2,2-bipyridine, 5 is 5,6-bis(dodecyloxy)-2,9-dimethyl-1,10-phenanthroline, and 6 is 5,6-bis(dodecyloxy)-1,10-phenanthroline. [1](PF6)2 is photolabile as a result of the steric strain induced by ligand 5, but the irradiation of [1](PF6)2 in solution leads to the nonselective and slow photosubstitution of one of its three ligands, making it a poor PACT compound. On the other hand, [2](PF6)2 is an efficient and photostable PDT photosensitizer. The water-dispersible, negatively charged nanoconjugate UCNP@lipid/[2] was prepared by the encapsulation of 44 nm diameter NaYF4:Yb3+,Tm3+ UCNPs in a mixture of 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycero-3-phosphocholine phospholipids, cholesterol, and the amphiphilic complex [2](PF6)2. A nonradiative energy transfer efficiency of 12% between the Tm3+ ions in the UCNP and the Ru2+ acceptor [2]2+ was found using time-resolved emission spectroscopy. Under irradiation with NIR light (969 nm), UCNP@lipid/[2] was found to produce reactive oxygen species (ROS), as judged by the oxidation of the nonspecific ROS probe 2′,7′-dichlorodihydrofluorescein (DCFH2–). Determination of the type of ROS produced was precluded by the negative surface charge of the nanoconjugate, which resulted in the electrostatic repulsion of the more specific but also negatively charged 1O2 probe tetrasodium 9,10-anthracenediyl-bis(methylene)dimalonate (Na4(ADMBMA))

    Dynamics of dual-fluorescent polymersomes with durable integrity in living cancer cells and zebrafish embryos

    No full text
    The long-term fate of biomedical nanoparticles after endocytosis is often only sparsely addressed in vitro and in vivo, while this is a crucial parameter to conclude on their utility. In this study, dual-fluorescent polyisobutylene-polyethylene glycol (PiB-PEG) polymersomes were studied for several days in vitro and in vivo. In order to optically track the vesicles' integrity, one fluorescent probe was located in the membrane and the other in the aqueous interior compartment. These non-toxic nanovesicles were quickly endocytosed in living A549 lung carcinoma cells but unusually slowly transported to perinuclear lysosomal compartments, where they remained intact and luminescent for at least 90 h without being exocytosed. Fluorescence-assisted flow cytometry indicated that after endocytosis, the nanovesicles were eventually degraded within 7–11 days. In zebrafish embryos, the polymersomes caused no lethality and were quickly taken up by the endothelial cells, where they remained fully intact for as long as 96 h post-injection. This work represents a novel case-study of the remarkable potential of PiB-PEG polymersomes as an in vivo bio-imaging and slow drug delivery platform.NWOBiological and Soft Matter Physic

    Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing

    No full text
    corecore