3 research outputs found

    Nanoparticles Containing Anti-inflammatory Agents as Chemotherapy Adjuvants II: Role of Plasma Esterases in Drug Release

    Get PDF
    The pre-administration of the anti-inflammatory drugs dexamethasone (DEX) and cortisone acetate reduces toxicity and enhances efficacy of anticancer agents in murine models and in human clinical trials (1–5). We previously reported on the formulation of the lipophilic dexamethasone palmitate ester (DEX-P) in nanoparticles (NPs) employing a microemulsion template engineering technique to achieve tumor-specific delivery of dexamethasone (6). The nanoparticles exhibited significantly enhanced stealth properties as indicated by reduced macrophage uptake and decreased adsorption of opsonin proteins in in vitro assays (6). Unexpectedly, preliminary biodistribution studies of NPs containing [3H]-DEX-P in tumor-bearing mice showed that the radiolabel was cleared from the circulation rapidly and exhibited high liver uptake. Our previous in vitro release studies demonstrated that rapid release of the radiolabel from the NPs was observed when 10% mouse plasma was used as the medium, while nominal release was observed in phosphate-buffered saline (PBS) buffer (6). Esterolysis of NP-associated DEX-P was presumed to be the main cause for the rapid drug release in plasma, as most of the released radioactivity was in the form of DEX and not DEX-P. High degradation rates of ester prodrugs in rodent plasma has been attributed to increased esterase activity, while only minimal degradation in human plasma has been observed (7–9). Based on our observation of the release of [3H]-DEX from NPs in mouse plasma, we studied the release of DEX from nanoparticles in various plasma sources as a guide for the design of future in vivo experiments

    Paradoxic activation of the renin-angiotensin system in twin-twin transfusion syndrome: An explanation for cardiovascular disturbances in the recipient

    No full text
    Despite advances in treatment, twin-to-twin transfusion syndrome (TTTS) still carries a high risk for perinatal mortality and morbidity. Simple blood transfer from the donor to the recipient twin cannot explain all of the features of this disease, in particular the recipient's hypertensive cardiomyopathy. We report a case in which TTTS resulted in preterm delivery with early neonatal death of both twins, allowing assessment of the renin angiotensin system (RAS) status of each fetus, both by cord blood renin and aldosterone assay and by renal immunohistochemistry. The donor had severe oliguria/oligohydramnios, whereas the recipient, in addition to severe polyuria/polyhydramnios, had cardiomyopathy, atrioventricular regurgitation, and ascites. Although immunohistochemistry demonstrated that renal secretion of renin was up-regulated in the donor and down-regulated in the recipient, cord blood levels of renin and aldosterone were similar, with high renin levels in both twins. This observation supports the hypothesis that despite renal RAS down-regulation, the recipient is exposed to RAS effectors elaborated in the donor and transferred via placental shunts. This may contribute to cardiomyopathy and hypertension in the recipient, which cannot be accounted for by hypervolemia alone. We thus hypothesized that in TTTS, the recipient's hypertensive cardiomyopathy could be due to a mechanism similar to the classical model of hypertension referred to as "2 kidneys-1 clip." Thus the hypovolemic donor twin, comparable to the clipped kidney, produces vasoactive hormones that compromise the recipient, comparable to the normal kidney, causing hypertension and cardiomyopathy

    The double face of the histone variant H3.3

    No full text
    Histone proteins wrap DNA to form nucleosome particles that compact eukaryotic genomes while still allowing access for cellular processes such as transcription, replication and DNA repair. Histones exist as different variants that have evolved crucial roles in specialized functions in addition to their fundamental role in packaging DNA. H3.3 – a conserved histone variant that is structurally very close to the canonical histone H3 – has been associated with active transcription. Furthermore, its role in histone replacement at active genes and promoters is highly conserved and has been proposed to participate in the epigenetic transmission of active chromatin states. Unexpectedly, recent data have revealed accumulation of this specific variant at silent loci in pericentric heterochromatin and telomeres, raising questions concerning the actual function of H3.3. In this review, we describe the known properties of H3.3 and the current view concerning its incorporation modes involving particular histone chaperones. Finally, we discuss the functional significance of the use of this H3 variant, in particular during germline formation and early development in different species
    corecore