6 research outputs found

    Antiprogestins reduce epigenetic field cancerization in breast tissue of young healthy women

    Get PDF
    Background: Breast cancer is a leading cause of death in premenopausal women. Progesterone drives expansion of luminal progenitor cells, leading to the development of poor-prognostic breast cancers. However, it is not known if antagonising progesterone can prevent breast cancers in humans. We suggest that targeting progesterone signalling could be a means of reducing features which are known to promote breast cancer formation. Methods: In healthy premenopausal women with and without a BRCA mutation we studied (i) estrogen and progesterone levels in saliva over an entire menstrual cycle (n = 20); (ii) cancer-free normal breast-tissue from a control population who had no family or personal history of breast cancer and equivalently from BRCA1/2 mutation carriers (n = 28); triple negative breast cancer (TNBC) biopsies and healthy breast tissue taken from sites surrounding the TNBC in the same individuals (n = 14); and biopsies of ER+ve/PR+ve stage T1–T2 cancers and healthy breast tissue taken from sites surrounding the cancer in the same individuals (n = 31); and (iii) DNA methylation and DNA mutations in normal breast tissue (before and after treatment) from clinical trials that assessed the potential preventative effects of vitamins and antiprogestins (mifepristone and ulipristal acetate; n = 44). Results: Daily levels of progesterone were higher throughout the menstrual cycle of BRCA1/2 mutation carriers, raising the prospect of targeting progesterone signalling as a means of cancer risk reduction in this population. Furthermore, breast field cancerization DNA methylation signatures reflective of (i) the mitotic age of normal breast epithelium and (ii) the proportion of luminal progenitor cells were increased in breast cancers, indicating that luminal progenitor cells with elevated replicative age are more prone to malignant transformation. The progesterone receptor antagonist mifepristone reduced both the mitotic age and the proportion of luminal progenitor cells in normal breast tissue of all control women and in 64% of BRCA1/2 mutation carriers. These findings were validated by an alternate progesterone receptor antagonist, ulipristal acetate, which yielded similar results. Importantly, mifepristone reduced both the TP53 mutation frequency as well as the number of TP53 mutations in mitotic-age-responders. Conclusions: These data support the potential usage of antiprogestins for primary prevention of poor-prognostic breast cancers

    Timing and duration of bevacizumab treatment and survival in patients with recurrent ovarian, fallopian tube, and peritoneal cancer: a multi-institution study.

    No full text
    Bevacizumab has demonstrated significant benefit in recurrent ovarian, fallopian tube and peritoneal cancer (OC), but its optimal position within the sequence of systemic therapies remains controversial. Since rebound progression after bevacizumab has been observed in other cancers, and because bevacizumab is incorporated in several regimens used in the recurrent setting, the duration of treatment may impact survival. We sought to identify whether earlier bevacizumab exposure is associated with prolonged bevacizumab therapy and survival by conducting a multi-institution retrospective study of recurrent OC patients treated with bevacizumab from 2004-2014. Multivariate logistic regression identified factors associated with receiving more than six bevacizumab cycles. Overall survival by duration and ordinal sequence of bevacizumab therapy were evaluated using logrank testing and Cox regression. In total, 318 patients were identified. 89.1% had stage III or IV disease; 36% had primary platinum resistance; 40.5% received two or fewer prior chemotherapy regimens. Multivariate logistic regression demonstrated that primary platinum sensitivity (Odds Ratio (OR) 2.34, p = 0.001) or initiating bevacizumab at the first or second recurrence (OR 2.73, p \u3c 0.001) were independently associated with receiving more than six cycles of bevacizumab. Receiving more cycles of bevacizumab was associated with improved overall survival whether measured from time of diagnosis (logrank p \u3c 0.001), bevacizumab initiation (logrank p \u3c 0.001), or bevacizumab discontinuation (logrank p = 0.017). Waiting one additional recurrence to initiate bevacizumab resulted in a 27% increased hazard of death (Hazard Ratio (HR) 1.27, p \u3c 0.001) by multivariate analysis. In conclusion, patients with primary platinum sensitive disease who received fewer prior lines of chemotherapy were able to receive more cycles of bevacizumab, which was associated with improved overall survival. Survival worsened when bevacizumab was initiated later in the ordinal sequence of therapies

    Antiprogestins reduce epigenetic field cancerization in breasts of young healthy women

    Get PDF
    Background: Breast cancer is a leading cause of death in premenopausal women. Progesterone drives expansion of luminal progenitor cells, leading to the development of poor-prognostic breast cancers. However, it is not known if antagonising progesterone can prevent breast cancers in humans. We suggest that targeting progesterone signalling could be a means of reducing features which are known to promote breast cancer formation. Methods: In healthy premenopausal women with and without a BRCA mutation we studied (i) estrogen and progesterone levels in saliva over an entire menstrual cycle (n = 20); (ii) cancer-free normal breast-tissue from a control population who had no family or personal history of breast cancer and equivalently from BRCA1/2 mutation carriers (n = 28); triple negative breast cancer (TNBC) biopsies and healthy breast tissue taken from sites surrounding the TNBC in the same individuals (n = 14); and biopsies of ER+ve/PR+ve stage T1–T2 cancers and healthy breast tissue taken from sites surrounding the cancer in the same individuals (n = 31); and (iii) DNA methylation and DNA mutations in normal breast tissue (before and after treatment) from clinical trials that assessed the potential preventative effects of vitamins and antiprogestins (mifepristone and ulipristal acetate; n = 44). Results: Daily levels of progesterone were higher throughout the menstrual cycle of BRCA1/2 mutation carriers, raising the prospect of targeting progesterone signalling as a means of cancer risk reduction in this population. Furthermore, breast field cancerization DNA methylation signatures reflective of (i) the mitotic age of normal breast epithelium and (ii) the proportion of luminal progenitor cells were increased in breast cancers, indicating that luminal progenitor cells with elevated replicative age are more prone to malignant transformation. The progesterone receptor antagonist mifepristone reduced both the mitotic age and the proportion of luminal progenitor cells in normal breast tissue of all control women and in 64% of BRCA1/2 mutation carriers. These findings were validated by an alternate progesterone receptor antagonist, ulipristal acetate, which yielded similar results. Importantly, mifepristone reduced both the TP53 mutation frequency as well as the number of TP53 mutations in mitotic-age-responders. Conclusions: These data support the potential usage of antiprogestins for primary prevention of poor-prognostic breast cancers

    Antiprogestins reduce epigenetic field cancerization in breast tissue of young healthy women

    Get PDF
    Background: Breast cancer is a leading cause of death in premenopausal women. Progesterone drives expansion of luminal progenitor cells, leading to the development of poor-prognostic breast cancers. However, it is not known if antagonising progesterone can prevent breast cancers in humans. We suggest that targeting progesterone signalling could be a means of reducing features which are known to promote breast cancer formation. Methods: In healthy premenopausal women with and without a BRCA mutation we studied (i) estrogen and progesterone levels in saliva over an entire menstrual cycle (n = 20); (ii) cancer-free normal breast-tissue from a control population who had no family or personal history of breast cancer and equivalently from BRCA1/2 mutation carriers (n = 28); triple negative breast cancer (TNBC) biopsies and healthy breast tissue taken from sites surrounding the TNBC in the same individuals (n = 14); and biopsies of ER+ve/PR+ve stage T1–T2 cancers and healthy breast tissue taken from sites surrounding the cancer in the same individuals (n = 31); and (iii) DNA methylation and DNA mutations in normal breast tissue (before and after treatment) from clinical trials that assessed the potential preventative effects of vitamins and antiprogestins (mifepristone and ulipristal acetate; n = 44). Results: Daily levels of progesterone were higher throughout the menstrual cycle of BRCA1/2 mutation carriers, raising the prospect of targeting progesterone signalling as a means of cancer risk reduction in this population. Furthermore, breast field cancerization DNA methylation signatures reflective of (i) the mitotic age of normal breast epithelium and (ii) the proportion of luminal progenitor cells were increased in breast cancers, indicating that luminal progenitor cells with elevated replicative age are more prone to malignant transformation. The progesterone receptor antagonist mifepristone reduced both the mitotic age and the proportion of luminal progenitor cells in normal breast tissue of all control women and in 64% of BRCA1/2 mutation carriers. These findings were validated by an alternate progesterone receptor antagonist, ulipristal acetate, which yielded similar results. Importantly, mifepristone reduced both the TP53 mutation frequency as well as the number of TP53 mutations in mitotic-age-responders. Conclusions: These data support the potential usage of antiprogestins for primary prevention of poor-prognostic breast cancers
    corecore