1,306 research outputs found
Estimate of convection-diffusion coefficients from modulated perturbative experiments as an inverse problem
The estimate of coefficients of the Convection-Diffusion Equation (CDE) from
experimental measurements belongs in the category of inverse problems, which
are known to come with issues of ill-conditioning or singularity. Here we
concentrate on a particular class that can be reduced to a linear algebraic
problem, with explicit solution. Ill-conditioning of the problem corresponds to
the vanishing of one eigenvalue of the matrix to be inverted. The comparison
with algorithms based upon matching experimental data against numerical
integration of the CDE sheds light on the accuracy of the parameter estimation
procedures, and suggests a path for a more precise assessment of the profiles
and of the related uncertainty. Several instances of the implementation of the
algorithm to real data are presented.Comment: Extended version of an invited talk presented at the 2012 EPS
Conference. To appear in Plasma Physics and Controlled Fusio
Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach
QuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded
to include momentum flux modeling in addition to heat and particle fluxes.
Essential for accurate momentum flux predictions, the parallel asymmetrization
of the eigenfunctions is successfully recovered by an analytical fluid model.
This is tested against self-consistent gyrokinetic calculations and allows for
a correct prediction of the ExB shear impact on the saturated potential
amplitude by means of a mixing length rule. Hence, the effect of the ExB shear
is recovered on all the transport channels including the induced residual
stress. Including these additions, QuaLiKiz remains ~10 000 faster than
non-linear gyrokinetic codes allowing for comparisons with experiments without
resorting to high performance computing. The example is given of momentum pinch
calculations in NBI modulation experiments
Comparison of Edge and Internal Transport Barriers in Drift Wave Predictive Simulations
We have simulated the formation of an internal transport barrier on JET including a self-consistent treatment of ion and electron temperatures and poloidal and toroidal momentum. Similar simulations of edge transport barriers, including the L-H transition have also been made. However, here only polodal momentum and the temperatures were simulated. The internal barrier included an anomalous spinup of poloidal momentum similar to that in the experiment. Also the edge barrier was accompanied by a spinup of poloidal momentum. The experimental density (with no barrier) was used and kept fixed for the internal barrier. For the edge barrier the edge density was varied and it turned out that a lower edge density gave a stronger barrier. Electromagnetic and nonlocal effects were important for both types of barriers
Precision stellar radial velocity measurements with FIDEOS at the ESO 1-m telescope of La Silla
We present results from the commissioning and early science programs of
FIDEOS, the new high-resolution echelle spectrograph developed at the Centre of
Astro Engineering of Pontificia Universidad Catolica de Chile, and recently
installed at the ESO 1m telescope of La Silla. The instrument provides spectral
resolution R = 43,000 in the visible spectral range 420-800 nm, reaching a
limiting magnitude of 11 in V band. Precision in the measurement of radial
velocity is guaranteed by light feeding with an octagonal optical fibre,
suitable mechanical isolation, thermal stabilisation, and simultaneous
wavelength calibration. Currently the instrument reaches radial velocity
stability of = 8 m/s over several consecutive nights of observation
Angular momentum transport modeling: achievements of a gyrokinetic quasi-linear approach
International audienceQuaLiKiz, a model based on a local gyrokinetic eigenvalue solver is expanded to include momentum flux modeling in addition to heat and particle fluxes. Essential for accurate momentum flux predictions, the parallel asymmetrization of the eigenfunctions is successfully recovered by an analytical fluid model. This is tested against self-consistent gyrokinetic calculations and allows for a correct prediction of the E×B shear impact on the saturated potential amplitude by means of a mixing length rule. Hence, the effect of the E×B shear is recovered on all the transport channels including the induced residual stress. Including these additions, QuaLiKiz remains ∼10 000 faster than non-linear gyrokinetic codes allowing for comparisons with experiments without resorting to high performance computing. The example is given of momentum pinch calculations in NBI modulation experiments
Impact of fast ions on density peaking in JET: fluid and gyrokinetic modeling
The effect of fast ions on turbulent particle transport, driven by ion temperature gradient (ITG)/trapped electron mode turbulence, is studied. Two neutral beam injection (NBI) heated JET discharges in different regimes are analyzed at the radial position rho(t) = 0.6, one of them an L-mode and the other one an H-mode discharge. Results obtained from the computationally efficient fluid model EDWM and the gyro-fluid model TGLF are compared to linear and nonlinear gyrokinetic GENE simulations as well as the experimentally obtained density peaking. In these models, the fast ions are treated as a dynamic species with a Maxwellian background distribution. The dependence of the zero particle flux density gradient (peaking factor) on fast ion density, temperature and corresponding gradients, is investigated. The simulations show that the inclusion of a fast ion species has a stabilizing influence on the ITG mode and reduces the peaking of the main ion and electron density profiles in the absence of sources. The models mostly reproduce the experimentally obtained density peaking for the L-mode discharge whereas the H-mode density peaking is significantly underpredicted, indicating the importance of the NBI particle source for the H-mode density profile
Interpretative and predictive modelling of Joint European Torus collisionality scans
Transport modelling of Joint European Torus (JET) dimensionless collisionality scaling experiments in various operational scenarios is presented. Interpretative simulations at a fixed radial position are combined with predictive JETTO simulations of temperatures and densities, using the TGLF transport model. The model includes electromagnetic effects and collisions as well as (E)over-right-arrow x (b)over-right-arrow shear in Miller geometry. Focus is on particle transport and the role of the neutral beam injection (NBI) particle source for the density peaking. The experimental 3-point collisionality scans include L-mode, and H-mode (D and H and higher beta D plasma) plasmas in a total of 12 discharges. Experimental results presented in (Tala et al 2017 44th EPS Conf.) indicate that for the H-mode scans, the NBI particle source plays an important role for the density peaking, whereas for the L-mode scan, the influence of the particle source is small. In general, both the interpretative and predictive transport simulations support the experimental conclusions on the role of the NBI particle source for the 12 JET discharges.Peer reviewe
- …